RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      제한된 수의 군사 이미지 분류에서 활용 가능한 프롬프트 기반 방법의 퓨샷러닝 성능 검증

      한글로보기

      https://www.riss.kr/link?id=A109521657

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      군사 분야의 데이터는 민감성과 보안상의 이유로 인해 대규모 데이터셋 구축에 상당한 어려움이 존재한다. 이런 제약적인 환경을 극복하기 위해, 본 연구에서는 프롬프트 러닝(prompt learning)에 기반한 접근법인 PromptSRC를 퓨샷러닝(Few-shot Learning)에 적용해 제한된 데이터만으로 딥러닝 모델을 효과적으로 학습하는 방법을 제안한다. 본 연구에서는 적은 수의 이 미지만을 학습에 사용할 수 있는 실제 군사 환경을 반영하기 위해, 전차와 전투기의 실제 이미지 데이터셋을 구축한 뒤 적은 수의 이미지만 학습에 사용했다. 또한, 대표적인 거대 사전학습 모델인 CLIP과의 성능을 비교해 프롬프트 러닝 기반 퓨샷 러 닝의 유효성을 검증하였다. 실험 결과, 적은 데이터만 학습에 가용할 수 있는 환경에서 비교적으로 높은 정확도를 나타내는 것을 확인하였고, 이는 군사 분야에서 데이터 제약적인 상황을 극복할 수 있는 유망한 접근법이 될 수 있음을 시사한다.
      번역하기

      군사 분야의 데이터는 민감성과 보안상의 이유로 인해 대규모 데이터셋 구축에 상당한 어려움이 존재한다. 이런 제약적인 환경을 극복하기 위해, 본 연구에서는 프롬프트 러닝(prompt learning)...

      군사 분야의 데이터는 민감성과 보안상의 이유로 인해 대규모 데이터셋 구축에 상당한 어려움이 존재한다. 이런 제약적인 환경을 극복하기 위해, 본 연구에서는 프롬프트 러닝(prompt learning)에 기반한 접근법인 PromptSRC를 퓨샷러닝(Few-shot Learning)에 적용해 제한된 데이터만으로 딥러닝 모델을 효과적으로 학습하는 방법을 제안한다. 본 연구에서는 적은 수의 이 미지만을 학습에 사용할 수 있는 실제 군사 환경을 반영하기 위해, 전차와 전투기의 실제 이미지 데이터셋을 구축한 뒤 적은 수의 이미지만 학습에 사용했다. 또한, 대표적인 거대 사전학습 모델인 CLIP과의 성능을 비교해 프롬프트 러닝 기반 퓨샷 러 닝의 유효성을 검증하였다. 실험 결과, 적은 데이터만 학습에 가용할 수 있는 환경에서 비교적으로 높은 정확도를 나타내는 것을 확인하였고, 이는 군사 분야에서 데이터 제약적인 상황을 극복할 수 있는 유망한 접근법이 될 수 있음을 시사한다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Due to the sensitivity and security concerns in the military domain, building large-scale datasets is challenging. To overcome these constraints, this study proposes an approach for effectively training deep learning models with limited data using PromtSRC which is a prompt-based method. We constructed a dataset containing real images of tanks and military aircraft reflecting real military environments, and used this dataset for training. The performance of the prompt-based few-shot learning approach was evaluated by comparing it with a benchmark model, CLIP. Experimental results indicate that the proposed model maintains relatively high accuracy in data-limited scenarios, suggesting it as a promising solution to overcome data scarcity in the military domain.
      번역하기

      Due to the sensitivity and security concerns in the military domain, building large-scale datasets is challenging. To overcome these constraints, this study proposes an approach for effectively training deep learning models with limited data using Pro...

      Due to the sensitivity and security concerns in the military domain, building large-scale datasets is challenging. To overcome these constraints, this study proposes an approach for effectively training deep learning models with limited data using PromtSRC which is a prompt-based method. We constructed a dataset containing real images of tanks and military aircraft reflecting real military environments, and used this dataset for training. The performance of the prompt-based few-shot learning approach was evaluated by comparing it with a benchmark model, CLIP. Experimental results indicate that the proposed model maintains relatively high accuracy in data-limited scenarios, suggesting it as a promising solution to overcome data scarcity in the military domain.

      더보기

      목차 (Table of Contents)

      • 요약
      • ABSTRACT
      • 1. 서론
      • 2. 관련 연구
      • 2.1 전통적인 이미지 인식 모델
      • 요약
      • ABSTRACT
      • 1. 서론
      • 2. 관련 연구
      • 2.1 전통적인 이미지 인식 모델
      • 2.2 이미지 인식 분야의 패러다임을 바꾼 VLM
      • 2.3 프롬프트 러닝
      • 3. 방법
      • 3.1 상호합의 극대화
      • 3.2 자가-앙상블
      • 3.3 텍스트 다양성 증대
      • 4. 실험 및 결과
      • 4.1 데이터셋
      • 4.2 실험 환경 설정 및 결과
      • 5. 결론
      • 참고문헌
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼