RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      SOME INTEGRAL REPRESENTATIONS OF THE CLAUSEN FUNCTION Cl2(x) AND THE CATALAN CONSTANT G

      한글로보기

      https://www.riss.kr/link?id=A103588136

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The Clausen function Cl2(x) arises in several applications. Alarge number of inde nite integrals of logarithmic or trigonometric functionscan be expressed in closed form in terms of Cl2(x). Very recently,Choi and Srivatava [3] and Choi [1] investigated certain integral formulasassociated with Cl2(x). In this sequel, we present an interesting new definiteintegral formula for the Clausen function Cl2(x) by using a knownrelationship between the Clausen function Cl2(x) and the generalized Zetafunction (s; a). Also an interesting integral representation for the Catalanconstant G is considered as one of two special cases of our main result.
      번역하기

      The Clausen function Cl2(x) arises in several applications. Alarge number of inde nite integrals of logarithmic or trigonometric functionscan be expressed in closed form in terms of Cl2(x). Very recently,Choi and Srivatava [3] and Choi [1] investigate...

      The Clausen function Cl2(x) arises in several applications. Alarge number of inde nite integrals of logarithmic or trigonometric functionscan be expressed in closed form in terms of Cl2(x). Very recently,Choi and Srivatava [3] and Choi [1] investigated certain integral formulasassociated with Cl2(x). In this sequel, we present an interesting new definiteintegral formula for the Clausen function Cl2(x) by using a knownrelationship between the Clausen function Cl2(x) and the generalized Zetafunction (s; a). Also an interesting integral representation for the Catalanconstant G is considered as one of two special cases of our main result.

      더보기

      참고문헌 (Reference)

      1 H. M. Srivastava, "ZETA AND q-ZETA FUNCTIONS AND ASSOCIATED SERIES AND INTEGRALS" Elsevier 2012

      2 T. Clausen, "Uber die function sin φ+ 122 sin 2φ+ 132 sin 3φ+ etc." 8 : 298-300, 1832

      3 I. S. Gradshteyn, "Tables of Integrals, Series, and Products" Academic Press 2000

      4 H. M. Srivastava, "Series Associated with the Zeta and Related Functions" Kluwer Academic Publishers 2001

      5 L. Lewin, "Polylogarithms and Associated Functions" Elsevier (North-Holland) 1981

      6 P. J. de Doelder, "On the Clausen integral Cl2(θ)" 11 : 325-330, 1984

      7 J. Choi, "Mathieu series and associated sums involving the Zeta functions" 59 : 861-867, 2010

      8 A. P. Prudnikov, "Integrals and Series" Gordon and Breach Science Publishers 1986

      9 C. C. Grosjean, "Formulae concerning the computation of the Clausen integral Cl2(θ)" 11 : 331-342, 1984

      10 V. E. Wood, "Effcient calculation of Clausen's integral" 22 : 883-884, 1968

      1 H. M. Srivastava, "ZETA AND q-ZETA FUNCTIONS AND ASSOCIATED SERIES AND INTEGRALS" Elsevier 2012

      2 T. Clausen, "Uber die function sin φ+ 122 sin 2φ+ 132 sin 3φ+ etc." 8 : 298-300, 1832

      3 I. S. Gradshteyn, "Tables of Integrals, Series, and Products" Academic Press 2000

      4 H. M. Srivastava, "Series Associated with the Zeta and Related Functions" Kluwer Academic Publishers 2001

      5 L. Lewin, "Polylogarithms and Associated Functions" Elsevier (North-Holland) 1981

      6 P. J. de Doelder, "On the Clausen integral Cl2(θ)" 11 : 325-330, 1984

      7 J. Choi, "Mathieu series and associated sums involving the Zeta functions" 59 : 861-867, 2010

      8 A. P. Prudnikov, "Integrals and Series" Gordon and Breach Science Publishers 1986

      9 C. C. Grosjean, "Formulae concerning the computation of the Clausen integral Cl2(θ)" 11 : 331-342, 1984

      10 V. E. Wood, "Effcient calculation of Clausen's integral" 22 : 883-884, 1968

      11 J. Choi, "Clausen function Cl2(x) and its related integrals" 2014

      12 K. S. Kolbig, "Chebyshev coeffcients for the Clausen function Cl2(x)" 64 : 295-297, 1995

      13 J. Choi, "An integral representation of the Clausen function Cl2(x)" 2014

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2010-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2009-04-24 학회명변경 한글명 : 부산경남수학회 -> 영남수학회
      영문명 : The Busan Gyeongnam Mathematical Society -> Youngnam Mathematical Society
      KCI등재후보
      2008-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.14 0.14 0.15
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.13 0.12 0.304 0.09
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼