RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      A Simultaneous Cholesky Decomposition of Two Positive Definite Matrices

      한글로보기

      https://www.riss.kr/link?id=A101601190

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper we consider the simultaneous diagonalization of two positive definite matrices. A necessary and sufficient condition is found under which two positive definite covariance matrices are simultaneously diagonalized in view of a Cholesky decomposition. This result can be applied to estimating the eigenvalues and eigenvectors of for two positive definite covariance matrices ,. under multivariate normality. The result is extended to more than two matrices. The result is also applied to computing the conditional expectations contained in some decompositions of the Mahalanobis distance that help us to explain some reasons for the outlyingness of multivariate observations in multivariate analysis. Since the Cholesky decomposition of covariance matrix is useful in expressing the conditional expectation of one variable when the remaining variables are fixed under multivariate normality. An example is given for an illustration.
      번역하기

      In this paper we consider the simultaneous diagonalization of two positive definite matrices. A necessary and sufficient condition is found under which two positive definite covariance matrices are simultaneously diagonalized in view of a Cholesky dec...

      In this paper we consider the simultaneous diagonalization of two positive definite matrices. A necessary and sufficient condition is found under which two positive definite covariance matrices are simultaneously diagonalized in view of a Cholesky decomposition. This result can be applied to estimating the eigenvalues and eigenvectors of for two positive definite covariance matrices ,. under multivariate normality. The result is extended to more than two matrices. The result is also applied to computing the conditional expectations contained in some decompositions of the Mahalanobis distance that help us to explain some reasons for the outlyingness of multivariate observations in multivariate analysis. Since the Cholesky decomposition of covariance matrix is useful in expressing the conditional expectation of one variable when the remaining variables are fixed under multivariate normality. An example is given for an illustration.

      더보기

      참고문헌 (Reference)

      1 "The Cholesky factorization of the inverse correlation or covariance matrix in multiple regression" tech (tech): 1982191-198

      2 "Projection Matrices for Partial Least Squares Regression and Principal Component Regression" Vol. 5, (Vol. 5,): 787-800, 2003b

      3 "On computing a Cholesky decomposition^" Vol. 3, (Vol. 3,): 37-42, 1996

      4 "Note on estimating the eigen system of Sigma_1^" , Vol. 10, (, Vol. 10,): 603-606, 2003

      5 "Multivariate Outliers and Decompositions of Mahalanobis Distance Communications in Statistics -" Vol. 29) (Vol. 29)): 1511-1526, 2000

      6 "Introduction to matrices with applications in statistics" Wadsworth Publishing Company Inc 1969

      7 "Interpreting PLSR^PCR Solutions via Moore-Penrose Generalized Inverse" Vol. 5 (Vol. 5): 199--210, 2003a

      8 "Estimating a Cholesky decomposition" 67 : 201-205, 1985

      9 "Common principal components analysis" 79 : 892-898, 1984

      10 "Aspects of multivariate Statistical Theory" 1982

      1 "The Cholesky factorization of the inverse correlation or covariance matrix in multiple regression" tech (tech): 1982191-198

      2 "Projection Matrices for Partial Least Squares Regression and Principal Component Regression" Vol. 5, (Vol. 5,): 787-800, 2003b

      3 "On computing a Cholesky decomposition^" Vol. 3, (Vol. 3,): 37-42, 1996

      4 "Note on estimating the eigen system of Sigma_1^" , Vol. 10, (, Vol. 10,): 603-606, 2003

      5 "Multivariate Outliers and Decompositions of Mahalanobis Distance Communications in Statistics -" Vol. 29) (Vol. 29)): 1511-1526, 2000

      6 "Introduction to matrices with applications in statistics" Wadsworth Publishing Company Inc 1969

      7 "Interpreting PLSR^PCR Solutions via Moore-Penrose Generalized Inverse" Vol. 5 (Vol. 5): 199--210, 2003a

      8 "Estimating a Cholesky decomposition" 67 : 201-205, 1985

      9 "Common principal components analysis" 79 : 892-898, 1984

      10 "Aspects of multivariate Statistical Theory" 1982

      11 "A General Solution of Generalized Ridge Regression for Non-orthogonal Explanatory Variables" Vol. 6, (Vol. 6,): 129-144, 2004

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.26 1.26 1.15
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.05 0.98 0.956 0.4
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼