RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      MFCC-HMM-GMM을 이용한 근전도(EMG)신호 패턴인식의 성능 개선 = Performance Improvement of EMG-Pattern Recognition Using MFCC-HMM-GMM

      한글로보기

      https://www.riss.kr/link?id=A101119303

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This study proposes an approach to the performance improvement of EMG(Electromyogram) pattern recognition. MFCC(Mel-Frequency Cepstral Coefficients)'s approach is molded after the characteristics of the human hearing organ. While it supplies the most typical feature in frequency domain, it should be reorganized to detect the features in EMG signal. And the dynamic aspects of EMG are important for a task, such as a continuous prosthetic control or various time length EMG signal recognition, which have not been successfully mastered by the most approaches. Thus, this paper proposes reorganized MFCC and HMM-GMM, which is adaptable for the dynamic features of the signal. Moreover, it requires an analysis on the most suitable system setting fur EMG pattern recognition. To meet the requirement, this study balanced the recognition-rate against the error-rates produced by the various settings when loaming based on the EMG data for each motion.
      번역하기

      This study proposes an approach to the performance improvement of EMG(Electromyogram) pattern recognition. MFCC(Mel-Frequency Cepstral Coefficients)'s approach is molded after the characteristics of the human hearing organ. While it supplies the most ...

      This study proposes an approach to the performance improvement of EMG(Electromyogram) pattern recognition. MFCC(Mel-Frequency Cepstral Coefficients)'s approach is molded after the characteristics of the human hearing organ. While it supplies the most typical feature in frequency domain, it should be reorganized to detect the features in EMG signal. And the dynamic aspects of EMG are important for a task, such as a continuous prosthetic control or various time length EMG signal recognition, which have not been successfully mastered by the most approaches. Thus, this paper proposes reorganized MFCC and HMM-GMM, which is adaptable for the dynamic features of the signal. Moreover, it requires an analysis on the most suitable system setting fur EMG pattern recognition. To meet the requirement, this study balanced the recognition-rate against the error-rates produced by the various settings when loaming based on the EMG data for each motion.

      더보기

      참고문헌 (Reference)

      1 "The theoretical development of a multichannel time-Series myopeocessor for simultaneous limb function detection and muscle force estimation" 36 : -10, 1989.

      2 "The application of counterpropagation neural networks for EMG pattern classification" rio-dejanerio : -1994, pp.919.

      3 "The EMG-force model of electrically stimulated muscle Dependence on control strategy and predominant fiber composition" moshe solomo 34 (moshe solomo 34): 692-703, 1987.

      4 "Text-inde-pendent speaker recognition by combining speaker-specific GMM with speaker adapted syllable-based HMM . IEEE International Conference on Acoustics" 1. : 2004May

      5 "Speaker-independent phone recognition using hidden Markov models" signal processing (signal processing): -11, nov.1989.

      6 "Robust speech recognition in additive and channel noise environments using GMM and EM algorithm . IEEE International Conference on Acoustics" 1. : 2004

      7 "Probabilistic-neural pattern classifier and muscle force estimation" sandiego : -1993, pp1145-1146.

      8 "Fundamentals of Speech Recognition" Prentice-Hall International 1993-, pp.333-357.

      9 "From a gaussian mixture model to additive fuzzy systems" 13 : 303-316, 2005.

      10 "Estimating hidden Markov model parameters so as to maximize speech recognition accuracy" 1 (1): 77-78, 1993.

      1 "The theoretical development of a multichannel time-Series myopeocessor for simultaneous limb function detection and muscle force estimation" 36 : -10, 1989.

      2 "The application of counterpropagation neural networks for EMG pattern classification" rio-dejanerio : -1994, pp.919.

      3 "The EMG-force model of electrically stimulated muscle Dependence on control strategy and predominant fiber composition" moshe solomo 34 (moshe solomo 34): 692-703, 1987.

      4 "Text-inde-pendent speaker recognition by combining speaker-specific GMM with speaker adapted syllable-based HMM . IEEE International Conference on Acoustics" 1. : 2004May

      5 "Speaker-independent phone recognition using hidden Markov models" signal processing (signal processing): -11, nov.1989.

      6 "Robust speech recognition in additive and channel noise environments using GMM and EM algorithm . IEEE International Conference on Acoustics" 1. : 2004

      7 "Probabilistic-neural pattern classifier and muscle force estimation" sandiego : -1993, pp1145-1146.

      8 "Fundamentals of Speech Recognition" Prentice-Hall International 1993-, pp.333-357.

      9 "From a gaussian mixture model to additive fuzzy systems" 13 : 303-316, 2005.

      10 "Estimating hidden Markov model parameters so as to maximize speech recognition accuracy" 1 (1): 77-78, 1993.

      11 "Digital Processing of Speech Signals" Prentice-Hall 1978-, pp.359-362.

      12 "Biomedical Digital Signal Processing" Prentice Hall International Editions 1993-, pp.43-44.

      13 "A new strategy for multifunction myoelectric control IEEE Trans on Biomedical EnGineering" 40. (40.):

      14 "A hybrid segmental neural net/hidden Markov model system for continuous speech recognition" 2 : 151-152, 1994.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2017-12-01 평가 등재후보로 하락 (계속평가) KCI등재후보
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-10-06 학술지명변경 외국어명 : 미등록 -> Joural of Biomedical Engineering Research KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.08 0.08 0.12
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.11 0.09 0.307 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼