RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Ultra-small Cu–Ni nanoalloy as a high-performance supercapacitor electrode material and highly durable methanol oxidation electrocatalyst

      한글로보기

      https://www.riss.kr/link?id=A108013247

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Ultra-small, pristine nanoalloy particles have attracted considerable attention for applications rangingfrom electrocatalysis to electrochemical energy storage owing to their high conductivity and large specificsurface area. However, their practical d...

      Ultra-small, pristine nanoalloy particles have attracted considerable attention for applications rangingfrom electrocatalysis to electrochemical energy storage owing to their high conductivity and large specificsurface area. However, their practical deployment relies on a controllable process is low-cost, scalable,and results in numerous monodispersed particles. In this work, we demonstrate an alcohothermal processthat is scalable to obtain ultra-small (r < 4 nm) and monodispersed (~4.1 ± 0.5 nm) Cu–Ni nanoalloyparticles. Ethylene-glycol was used as a reaction medium that also acts as an in situ reducing and cappingagent responsible for nanoalloy formation. The prepared nanoalloy particles were electrochemicallytested for supercapacitor and methanol-oxidation applications. The nanoalloy electrode showed a desirablespecific capacitance of 858F g 1 at a current density of 1 Ag 1 with good cyclic stability. As a catalystfor methanol-oxidation, the nanoalloy showed a high current density of ~191.5 mA cm 2. The methanoloxidationreaction current reached 156 mA while maintaining 83% of its initial value, even after 300cycles. The observed superior electrochemical performance is attributed to the high conductivity, fastelectron transport, and large specific surface associated with ultra-small Cu-Ni nanoalloy particles.

      더보기

      참고문헌 (Reference)

      1 C. Liu, 22 : E28-E62, 2010

      2 Y. An, 49 (49): 1646-1651, 2020

      3 H. Wang, 7 : 1601709-, 2017

      4 R. Santhosh, 276 : 284-292, 2018

      5 Y. Luan, 308 : 121-130, 2019

      6 Y. Li, 309 : 2020

      7 U. Kurtan, 32 : 2020

      8 I. S. Pieta, 244 : 272-283, 2019

      9 X. Wang, 7 (7): 1-13, 2017

      10 T. Bhusankar, 685 : 84-88, 2017

      1 C. Liu, 22 : E28-E62, 2010

      2 Y. An, 49 (49): 1646-1651, 2020

      3 H. Wang, 7 : 1601709-, 2017

      4 R. Santhosh, 276 : 284-292, 2018

      5 Y. Luan, 308 : 121-130, 2019

      6 Y. Li, 309 : 2020

      7 U. Kurtan, 32 : 2020

      8 I. S. Pieta, 244 : 272-283, 2019

      9 X. Wang, 7 (7): 1-13, 2017

      10 T. Bhusankar, 685 : 84-88, 2017

      11 T. Bhusankar, 265 : 771-778, 2018

      12 T. Bhusankar, 116 : 122-130, 2018

      13 S. Rana, 7 (7): 2869-2879, 2017

      14 Lijuan Sun, 7 : 17781-17787, 2017

      15 T. Xia, 14 (14): 5741-5744, 2012

      16 G. H. Mohamed Saeed, 2010 : 2010

      17 U. Holzwarth, 6 (6): 534-534, 2011

      18 J. Stergar, 48 (48): 1344-1347, 2012

      19 U. Naveen, 6 : 1255-1272, 2019

      20 M. Salanne, 1 : 1-10, 2016

      21 N. Abdullah, 13 (13): 1-13, 2018

      22 A. Khouchaf, 4 (4): 97-105, 2016

      23 Jiangmin, Jiang, 1700110-, 2017

      24 Q. Yang, 370 : 666-676, 2019

      25 X. Ma, 24 (24): 529-537, 2018

      26 K. Kong, 437 : 2019

      27 A. Yuda, 1-103, 2020

      28 S. Wu, 7 (7): 22935-22940, 2015

      29 S. Wasmus, 461 (461): 14-31, 1999

      30 J. Ahmed, 331 (331): 206-212, 2008

      31 P. Wu, 14 (14): 1801479-, 2018

      32 S. Shan, 4 (4): 42654-42669, 2014

      33 Q. Q. Y. W. Chen, 113 : 7497-, 2009

      34 G. Balakrishnan, 145 : 443-466, 2010

      35 J. D. Schiffman, 258 : 1191-1214, 2018

      36 S. Zhang, 14 (14): 2019

      37 Ediga Umeshbabu, "Synthesis of mesoporous NiCo2O4–rGO by a solvothermal method for charge storage applications" Royal Society of Chemistry (RSC) 5 (5): 66657-66666, 2015

      38 Suba Lakshmi Madaswamy, "Polyaniline-based nanocomposites for direct methanol fuel cells (DMFCs) - A Recent Review" 한국공업화학회 97 : 79-94, 2021

      39 이광세, "Novel structure of bacteria doped ZnO particles: Facile and green synthesis route to prepare hybrid material for supercapacitor electrodes" 한국공업화학회 97 : 250-255, 2021

      40 Ediga Umeshbabu, "NiCo 2 O 4 hexagonal nanoplates anchored on reduced graphene oxide sheets with enhanced electrocatalytic activity and stability for methanol and water oxidation" Elsevier BV 213 : 717-729, 2016

      41 Min Fu, "Microwave deposition synthesis of Ni(OH)2/sorghum stalk biomass carbon electrode materials for supercapacitors" Elsevier BV 846 : 156376-, 2020

      42 Ediga Umeshbabu, "Magnetic, optical and electrocatalytic properties of urchin and sheaf-like NiCo2O4 nanostructures" Elsevier BV 165 : 235-244, 2015

      43 Min Fu, "In situ growth of manganese ferrite nanorods on graphene for supercapacitors" Elsevier BV 46 (46): 28200-28205, 2020

      44 G RAJESHKHANNA, "In situ grown nano-architectures of Co3O4 on Ni-foam for charge storage application" Springer Science and Business Media LLC 129 (129): 157-166, 2017

      45 Zitong Zhu, "Growth of MnCo2O4 hollow nano-spheres on activated carbon cloth for flexible asymmetric supercapacitors" Elsevier BV 492 : 229669-, 2021

      46 김윤기, "Functionalized phosphorene/polypyrrole hybrid nanomaterial by covalent bonding and its supercapacitor application" 한국공업화학회 94 : 122-126, 2021

      47 Min Fu, "Facile synthesis of strontium ferrite nanorods/graphene composites as advanced electrode materials for supercapacitors" Elsevier BV 588 : 795-803, 2021

      48 Min Fu, "Facile synthesis of V2O5/graphene composites as advanced electrode materials in supercapacitors" Elsevier BV 862 : 158006-, 2021

      49 Dengfeng Wu, "Facile Synthesis of Cu/NiCu Electrocatalysts Integrating Alloy, Core–Shell, and One-Dimensional Structures for Efficient Methanol Oxidation Reaction" American Chemical Society (ACS) 9 (9): 19843-19851, 2017

      50 ROY ANIMESH, "Electrochemical deposition of self-supported bifunctional copper oxide electrocatalyst for methanol oxidation and oxygen evolution reaction" 한국공업화학회 76 : 515-523, 2019

      51 Shahid Ali, "Co@Pt core–shell nanoparticles supported on carbon nanotubes as promising catalyst for methanol electro-oxidation" 한국공업화학회 28 : 344-350, 2015

      52 Bal Sydulu Singu, "Carbon Nanotube–Manganese oxide nanorods hybrid composites for high-performance supercapacitor materials" 한국공업화학회 97 : 239-249, 2021

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 3.4 0.75 2.84
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      2.39 2.24 0.397 0.56
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼