RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Algal genomics perspective: the pangenome concept beyond traditional molecular phylogeny and taxonomy

      한글로보기

      https://www.riss.kr/link?id=A107494631

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Algal genomics approaches provide a massive number of genome/transcriptome sequences and reveal the evolutionary history vis-à-vis primary and serial endosymbiosis events that contributed to the biodiversity of photosynthetic eukaryotes in the eukaryote tree of life. In particular, phylogenomic methods using several hundred or thousands of genes have provided new insights into algal taxonomy and systematics. Using this method, many novel insights into algal species diversity and systematics occurred, leading to taxonomic revisions. In addition, horizontal gene transfers (HGTs) of functional genes have been identified in algal genomes that played essential roles in environmental adaptation and genomic diversification. Finally, algal genomics data can be used to address the pangenome, including core genes shared among all isolates and partially shared strain-specific genes. However, some aspects of the pangenome concept (genome variability of intraspecies level) conflict with population genomics concepts, and the issue is closely related to defining species boundaries using genome variability. This review suggests a desirable future direction to merge algal pangenomics and population genomics beyond traditional molecular phylogeny and taxonomy.
      번역하기

      Algal genomics approaches provide a massive number of genome/transcriptome sequences and reveal the evolutionary history vis-à-vis primary and serial endosymbiosis events that contributed to the biodiversity of photosynthetic eukaryotes in the eukary...

      Algal genomics approaches provide a massive number of genome/transcriptome sequences and reveal the evolutionary history vis-à-vis primary and serial endosymbiosis events that contributed to the biodiversity of photosynthetic eukaryotes in the eukaryote tree of life. In particular, phylogenomic methods using several hundred or thousands of genes have provided new insights into algal taxonomy and systematics. Using this method, many novel insights into algal species diversity and systematics occurred, leading to taxonomic revisions. In addition, horizontal gene transfers (HGTs) of functional genes have been identified in algal genomes that played essential roles in environmental adaptation and genomic diversification. Finally, algal genomics data can be used to address the pangenome, including core genes shared among all isolates and partially shared strain-specific genes. However, some aspects of the pangenome concept (genome variability of intraspecies level) conflict with population genomics concepts, and the issue is closely related to defining species boundaries using genome variability. This review suggests a desirable future direction to merge algal pangenomics and population genomics beyond traditional molecular phylogeny and taxonomy.

      더보기

      참고문헌 (Reference)

      1 Díaz-Tapia, P., "Widely distributed red aglae often represent hidden introductions, complexes of cryptic species or species with strong phylogeographic structure" 54 (54): 829-839, 2018

      2 Jarvis, E. D., "Whole-genome analyses resolve early branches in the tree of life of modern birds" 346 (346): 1320-1331, 2014

      3 Medlin, L. K., "Unravelling the algae: the past, present, and future of algal systematics" Taylor and Francis 341-353, 2007

      4 Bengtson, S., "Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae" 15 (15): e2000735-, 2017

      5 Shapiro, B. J, "The population genetics of pangenomes" 2 (2): 1574-1574, 2017

      6 Richard, G. F, "The pangenome: diversity, dynamics and evolution of genomes" Springer 253-291, 2020

      7 Azarian, T., "The pangenome: diversity, dynamics and evolution of genomes" Springer 115-128, 2020

      8 Bobay, L. M, "The pange-nome: diversity, dynamics and evolution of genomes" Springer 21-49, 2020

      9 Burki, F., "The new tree of eukaryotes" 31 (31): 43-55, 2019

      10 Muñoz-Gómez, S. A., "The new red algal subphylum Proteorhodophytina comprises the largest and most divergent plastid genomes known" 27 (27): 1677-1684, 2017

      1 Díaz-Tapia, P., "Widely distributed red aglae often represent hidden introductions, complexes of cryptic species or species with strong phylogeographic structure" 54 (54): 829-839, 2018

      2 Jarvis, E. D., "Whole-genome analyses resolve early branches in the tree of life of modern birds" 346 (346): 1320-1331, 2014

      3 Medlin, L. K., "Unravelling the algae: the past, present, and future of algal systematics" Taylor and Francis 341-353, 2007

      4 Bengtson, S., "Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae" 15 (15): e2000735-, 2017

      5 Shapiro, B. J, "The population genetics of pangenomes" 2 (2): 1574-1574, 2017

      6 Richard, G. F, "The pangenome: diversity, dynamics and evolution of genomes" Springer 253-291, 2020

      7 Azarian, T., "The pangenome: diversity, dynamics and evolution of genomes" Springer 115-128, 2020

      8 Bobay, L. M, "The pange-nome: diversity, dynamics and evolution of genomes" Springer 21-49, 2020

      9 Burki, F., "The new tree of eukaryotes" 31 (31): 43-55, 2019

      10 Muñoz-Gómez, S. A., "The new red algal subphylum Proteorhodophytina comprises the largest and most divergent plastid genomes known" 27 (27): 1677-1684, 2017

      11 Adl, S. M., "The new higher level classification of eukaryotes with emphasis on the taxonomy of protists" 52 (52): 399-451, 2005

      12 de Vries, J., "The monoplastidic bottle-neck in algae and plant evolution" 131 (131): jcs203414-, 2018

      13 Keeling, P. J., "The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing" 12 (12): e1001889-, 2014

      14 Rossoni, A. W., "The genomes of polyextremophilic cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions" 8 : e45017-, 2019

      15 Burki, F., "The evolutionary history of haptophytes and crypto-phytes : phylogenomic evidence for separate origins" 279 (279): 2246-2254, 2012

      16 Kumar, V., "The evolutionary his-tory of bears is characterized by gene flow across species" 7 : 46487-, 2017

      17 Giovagnetti, V., "The evolution of the photoprotective antenna proteins in oxygenic photosyn-thetic eukaryotes" 46 (46): 1263-1277, 2018

      18 Keeling, P. J, "The endosymbiotic origin, diversification and fate of plastids" 365 (365): 729-748, 2010

      19 Bennetzen, J. L., "The contributions of transposable elements to the structure, function, and evo-lution of plant genomes" 65 : 505-530, 2014

      20 Toews, D. P. L., "The biogeography of mitochondrial and nuclear discordance in animals" 21 (21): 3907-3930, 2012

      21 Gabrielson, P. W., "The nature of the ancestral red alga: inferences from a cladistic analysis" 18 (18): 335-346, 1985

      22 Mao, Y., "TREEasy : an automated workflow to infer gene trees, species tress, and phylogenetic networks form multilocus data" 20 : 832-840, 2020

      23 de Vries, J., "Streptophyte terrestrialization in light of plastid evolution" 21 (21): 467-476, 2016

      24 Barth, J. M. I., "Stable species boundaries despite ten million years of hybridization in tropical eels" 11 : 1433-, 2020

      25 Yoon, H. S., "Single-cell genomics reveals organismal interactions in uncultivated marine protists" 332 (332): 714-717, 2011

      26 Seeleuthner, Y., "Single-cell genomics of multiple un-cultured stramenopiles reveals underestimated functional diversity across oceans" 9 : 310-, 2018

      27 Gradinger, R, "Sea-ice algae : major contributors to pri-mary production and algal biomass in the Chukchi and Beaufort Seas during May/June 2002" 56 (56): 1201-1212, 2009

      28 Chan, C. X., "Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes" 21 (21): 328-333, 2011

      29 Yoon, H. S., "Red algae in the genomic age" Springer 27-42, 2010

      30 Edge, M. D., "Reconstructing the history of polygenic scores using coalescent trees" 211 : 235-262, 2019

      31 Lee, J. M., "Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes" 6 : 23744-, 2016

      32 Keeling, P.J, "Progress towards the tree of eukaryotes" 29 (29): R808-R817, 2019

      33 Gibson, T. M., "Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis" 46 (46): 135-138, 2018

      34 Matteoli, F. P., "Population structure and pangenome analysis Enterobacter bugandensis uncover the presence of blaCTX-M-55, blaNDM-5 and blaIMI-1, along with sophisticated iron acquisition strategies" 112 (112): 1182-1191, 2020

      35 Fan, X., "Phytoplankton pangenome reveals extensive prokaryotic horizontal gene transfer of diverse functions" 6 (6): eaba0111-, 2020

      36 Gulbrandsen, Ø. S., "Phylogenomic analysis restructures the ulvophyceae" 2021

      37 Pirie, M. D, "Phylogenies from concatenated data: is the end nigh?" 64 (64): 421-423, 2015

      38 Hu, Y., "Phylogenetic analy-sis and substitution rate estimation of colonial volvocine algae based on mitochondrial genomes" 11 (11): 115-, 2020

      39 Bhattacharya, D., "Photosynthesis in algae: biochemical and physiological mechanisms" Springer 11-24, 2020

      40 Bhattacharya, D., "Photo-synthetic eukaryotes unite : endosymbiosis connects the dots" 26 : 50-60, 2004

      41 Lee, J. M., "Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants" 14 : 75-, 2016

      42 Golicz, A. A., "Pangenomics comes of age : from bacteria to plant and animal applications" 36 (36): 132-145, 2020

      43 Read, B. A., "Pan genome of the phytoplankton Emiliania underpins its global distribution" 499 (499): 209-213, 2013

      44 Yabuki, A., "Palpitomonas bilix represents a basal cryptist lineage : insight into the character evolution in Cryptista" 4 : 4641-, 2014

      45 Iha, C., "Organellar genomics: a useful tool to study evolutionary relationships and molecular evo-lution in Gracilariaceae (Rhodophyta)" 54 (54): 775-787, 2018

      46 Gawryluk, R. M. R., "Non-photosynthetic predators are sister to red algae" 572 (572): 240-243, 2019

      47 Strassert, J. F. H., "New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life" 36 (36): 757-765, 2019

      48 Zuccarello, G. C., "Multiple cryptic spe-cies: molecular diversity and reproductive isolation in the Bostrychia radicans/B. moritziana complex (Rhodomela-ceae, Rhodophyta) with focus on North American isolates" 39 (39): 948-959, 2003

      49 Graf, L., "Multigene phylogeny, morphological observation and re-examination of the lit-erature lead to the description of the Phaeosacciophyceae classis nova and four new species of the Heterokontophyta SI clade" 171 (171): 125781-, 2020

      50 Díaz-Tapia, P., "Morphological evolution and classification of the red algal order Ceramiales inferred using plastid phylogeno-mics" 137 : 76-85, 2019

      51 Rodríguez-Ezpeleta, N., "Monophyly of primary photosynthetic eukaryotes : green plants, red algae, and glaucophytes" 15 (15): 1325-1330, 2005

      52 Saunders, G. W., "Molecular diver-gence and morphological diversity among four cryptic species of Plocamium(Plocamiales, Florideophyceae)in norther Europe" 40 (40): 293-312, 2005

      53 Wendel, J. F., "Molecular Systematics of Plants II" Springer 265-296, 1998

      54 Lee, J. M., "Mitochondrial and plastid genomes from coralline red algae provide insights into the incongruent evolutionary histories of organelles" 10 (10): 2961-2972, 2018

      55 Schliep, K., "Intertwining phylogenetic trees and networks" 8 (8): 1212-1220, 2017

      56 Brawley, S. H., "Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta)" 114 (114): E6361-E6370, 2017

      57 Maddison, W. P., "Inferring phylogeny despite incomplete lineage sorting" 55 (55): 21-30, 2006

      58 Fehrer, J., "Incon-gruent plastid and nuclear DNA phylogenies reveal anc-ient intergeneric hybridization in Pilosella hawkweeds(Hieracium, Cichorieae, Asteraceae)" 42 (42): 347-361, 2007

      59 Nguyen, L. T., "IQ-TREE : a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies" 32 (32): 268-274, 2015

      60 Bryand, D. A., "How nature designs light-harvesting antenna systems: design principles and functional realization in chlorophototrophic prokaryotes" 51 (51): 033001-, 2018

      61 Van Etten, J., "Horizontal gene transfer in eukaryotes: not if, but how much?" 36 (36): 915-925, 2020

      62 Yang, E. C., "Highly conserved mitochondrial genomes among multicellular red algae of the Florideophyceae" 7 (7): 2394-2406, 2015

      63 Oliveira, M. C., "High-throughput sequencing for algal systematics" 53 (53): 256-272, 2018

      64 Jain, C., "High throughput ANI analysis of 90K prokaryotic genomes reveals clear species bound-aries" 9 : 5114-, 2018

      65 Russell, S., "High seq-uence divergence but limited architectural rearrangements in organelle genomes of Cyanophora (Glaucophyta) spe-cies" 68 : e12831-, 2021

      66 Simpson, A. G. B., "Hand-book of the protists" Springer International Pub-lishing 1-21, 2017

      67 Sibbald, S. J., "Genomic insights into plastid evolution" 12 (12): 978-990, 2020

      68 Godfroy, O., "Genome-wide comparison of ultraviolet and ethyl methan-esulphonate mutagenesis methods for the brown alga Ecto-carpus" 24 : 109-113, 2015

      69 Rokas, A., "Genome-scale approaches to resolving incongruence in molecular phylogenies" 425 (425): 798-804, 2003

      70 Collén, J., "Genome structure and metabolic features in the red seaweed Chon-drus crispus shed light on evolution of the Archaeplastida" 110 (110): 5247-5252, 2013

      71 Tettelin, H., "Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implica-tions for the microbial “pan-genome”" 102 (102): 13950-13955, 2005

      72 Matute, D. R., "Fungal species bound-aries in the genomics era" 131 : 103249-, 2019

      73 Payo, D. A., "Extensive cryptic spe-cies diversity and fine-scale endemism in the marine red alga Portieria in the Philippines" 280 (280): 20122660-, 2013

      74 Rudd, S, "Expressed sequence tags: alternative or com-plement to whole genome sequences?" 8 (8): 1360-1385, 2003

      75 Lee, J. M., "Expansion of phycobilisome linker gene families in meso-philic red algae" 10 : 4823-, 2019

      76 Kim, J. I., "Evolutionary dynamics of cryptophyte plastid genomes" 9 (9): 1859-1872, 2017

      77 Janouškovec, J., "Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers" 8 (8): e59001-, 2013

      78 Parfrey, L. W., "Estimating the timing of early eukaryotic diversification with multigene molecular clocks" 108 (108): 13624-13629, 2011

      79 Timmis, J. N., "Endosymbiotic gene transfer : organelle genomes forge eukaryotic chromosomes" 5 (5): 123-135, 2004

      80 Mercado, J. M., "Ency-clopedia of marine biotechnology" John Wiley & Sons 341-357, 2020

      81 Sánchez-Baracaldo, P., "Early photosynthetic eukaryotes inhabited low-sal-inity habitats" 114 (114): E7737-E7745, 2017

      82 Reyes-Prieto, A., "Differential gene retention in plastids of common recent origin" 27 (27): 1530-1537, 2010

      83 Yoon, H. S., "Defining the major lineages of red algae(Rhodophyta)" 42 (42): 482-492, 2006

      84 Willis, A., "Defining cyanobacterial species : diversity and description through genomics" 39 (39): 101-124, 2020

      85 Ono, J., "Defining and disrupt-ing species boundaries in Saccharomyces" 74 : 477-495, 2020

      86 Sun, M., "Deep phylogenetic incongruence in the angiosperm clade Rosidae" 83 : 156-166, 2015

      87 Price, D. C., "Cyanophora paradoxa genome elucidates origin of photo-synthesis in algae and plants" 355 (355): 843-847, 2012

      88 Shaw, K. L, "Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: what mtDNA reveals and conceals about modes of speciation in Hawai-ian crickets" 99 (99): 16122-16127, 2002

      89 Xi, Z., "Coalescent ver-sus concatenation methods and the placement of Amborella as sister to water lilies" 63 (63): 919-932, 2014

      90 Nowack, E. C. M., "Chro-matophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes" 18 (18): 410-418, 2008

      91 Costa, J. F., "Chloroplast genomes as a tool to resolve red algal phylogenies : a case study in the Nema-liales" 16 : 205-, 2016

      92 Dorrell, R. G., "Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome" 6 : e23717-, 2017

      93 Brodie, J., "Biotic interactions as drivers of algal origin and evolution" 216 (216): 670-681, 2017

      94 Butterfield, N. J, "Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of euka-ryotes" 26 (26): 386-404, 2000

      95 Huson, D. H., "Application of phylogenetic networks in evolutionary studies" 23 (23): 254-267, 2006

      96 Díaz-Tapia, P., "Analysis of chloroplast genomes and a supermatrix inform reclassification of the Rhodomelaceae(Rhodo-phyta)" 53 (53): 920-937, 2017

      97 Lee, J. M., "Analysis of the draft genome of the red seaweed Gracilariopsis chorda provides insights into genome size evolution in Rhodo-phyta" 35 (35): 1869-1886, 2018

      98 Rice, D. W., "An exceptional horizontal gene transfer in plastids : gene replacement by a distant bacterial paralog and evidence that haptophyte and crypto-phyte plastids are sisters" 4 : 31-, 2006

      99 Ponce-Toledo, R., "An early-branch-ing freshwater cyanobacterium at the origin of plastids" 27 (27): 386-391, 2017

      100 Lhee, D., "Amoeba Genome Reveals Dominant Host Contribution to Plas-tid Endosymbiosis" 38 (38): 344-357, 2021

      101 Umen, J., "Algal sex determination and the evolution of anisogamy" 73 : 267-291, 2019

      102 Guiry, M.D, "AlgaeBase" World-wide electronic publication, National University of Ireland, Gal-way

      103 Zhang, Z., "Adaptation to extreme Antarctic environments revealed by the genome of a sea ice green alga" 30 (30): 3330-3341, 2020

      104 Yoon, H. S., "A sin-gle origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis" 99 (99): 11724-11729, 2002

      105 Theriot, E. C., "A preliminary multigene phylogeny of the diatoms(Bacillariophyta) : challenges for future research" 143 (143): 278-296, 2010

      106 Tang, Q., "A one-billion-year-old multicellular chlorophyte" 4 (4): 543-549, 2020

      107 송해중, "A novice’s guide to analyzing NGS-derived organelle and metagenome data" 한국조류학회I 31 (31): 137-154, 2016

      108 Strassert, J. F. H., "A molecular timescale for eukaryote evolution with impli-cations for the origin of red algal-derived plastids" 12 : 1879-, 2021

      109 Yoon, H. S., "A molecular timeline for the origin of pho-tosynthetic eukaryotes" 21 (21): 809-818, 2004

      110 Ragan, M. A., "A molecular phylogeny of the mar-ine red algae(Rhodophyta)based on the nuclear small-subunit rRNA gene" 91 (91): 7276-7280, 1994

      111 Cummins, C. A., "A method for infer-ring the rate of evolution of homologous characters that can potentially improve phylogenetic inference, resolve deep divergence and correct systematic biases" 60 (60): 833-844, 2011

      112 MacGuigan, D. J., "A genomic assessment of species boundaries and hybridization in a group of highly polymorphic anoles(distichus species com-plex)" 7 (7): 3657-3671, 2017

      113 Graf, L., "A genome-wide investigation of the effect of farming and human-mediated introduction on the ubiquitous seaweed Undaria pinnatifida" 5 (5): 360-368, 2021

      114 Freshwater, D. W., "A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL" 91 (91): 7281-7285, 1994

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2028 평가예정 재인증평가 신청대상 (재인증)
      2022-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2019-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2018-01-01 평가 등재후보학술지 유지 (계속평가) KCI등재후보
      2017-01-01 평가 등재후보학술지 유지 (계속평가) KCI등재후보
      2015-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0 0 0
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0 0 0 0
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼