RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      국내 대형 스모그의 챔버 구축 및 연구 동향 = A Review of Large-Scale Smog Chamber and Research Trends

      한글로보기

      https://www.riss.kr/link?id=A107984082

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This study reviewed the current research trends using smog chambers based on a pilot experiment on the formation of fine particulate matter through photochemical reactions. Among the recent major related studies, major issues on (1) gas phase reactions, (2) secondary organic matter formation, and (3) liquid phase reactions have been discussed. At last, design of Large-Scale Smog Chamber was suggested for the domestic construction to perform the secondary formation and reduction of precursor gases such as NO by titanium dioxide (TiO<sub>2</sub>), which is a relatively inexpensive, nontoxic, and easy to handle material for the further study. This study has shown that large-scale environment chambers can simulate the atmospheric photochemical reaction like-real-world for the reduction of fine particulate matter and the formation of the aerosol pathway.
      번역하기

      This study reviewed the current research trends using smog chambers based on a pilot experiment on the formation of fine particulate matter through photochemical reactions. Among the recent major related studies, major issues on (1) gas phase reaction...

      This study reviewed the current research trends using smog chambers based on a pilot experiment on the formation of fine particulate matter through photochemical reactions. Among the recent major related studies, major issues on (1) gas phase reactions, (2) secondary organic matter formation, and (3) liquid phase reactions have been discussed. At last, design of Large-Scale Smog Chamber was suggested for the domestic construction to perform the secondary formation and reduction of precursor gases such as NO by titanium dioxide (TiO<sub>2</sub>), which is a relatively inexpensive, nontoxic, and easy to handle material for the further study. This study has shown that large-scale environment chambers can simulate the atmospheric photochemical reaction like-real-world for the reduction of fine particulate matter and the formation of the aerosol pathway.

      더보기

      참고문헌 (Reference)

      1 이승복, "실제 대기의 광화학 반응 챔버로 사용되는 테플론 백의 오염도 평가" 한국입자에어로졸학회 9 (9): 149-161, 2013

      2 임용빈, "스모그 챔버를 이용한 이차 초미세유기먼지의 최근 연구 동향" 한국대기환경학회 32 (32): 131-157, 2016

      3 박진수, "서울과 인천지역 PM10과 PM2.5 중 2차생성 탄소성분 추정" 한국대기환경학회 21 (21): 131-140, 2005

      4 Silaev, F. C., "Uridine as photochemical actinometer:application to LED-UV flow reactors" 6 (6): 405-409, 2017

      5 Paulot, F., "Unexpected epoxide formation in the gas-phase photooxidation of isoprene" 325 (325): 730-733, 2009

      6 Chen, H., "Titanium dioxide photocatalysis in atmospheric chemistry" 112 (112): 5919-5948, 2012

      7 Tobias, H. J., "Thermal desorption mass spectrometric analysis of organic aerosol formed from reactions of 1-tetradecene and O3 in the presence of alcohols and carboxylic acids" 34 (34): 2105-2115, 2000

      8 Hess, G., "The evaluation of some photochemical smog reaction mechanisms, Temperature and initial composition effects" 26 (26): 625-641, 1992

      9 Takekawa, H., "Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons" 37 (37): 3413-3424, 2003

      10 Cocker, D. R., "State"of-the-art chamber facility for studying atmospheric aerosol chemistry" 35 (35): 2594-2601, 2001

      1 이승복, "실제 대기의 광화학 반응 챔버로 사용되는 테플론 백의 오염도 평가" 한국입자에어로졸학회 9 (9): 149-161, 2013

      2 임용빈, "스모그 챔버를 이용한 이차 초미세유기먼지의 최근 연구 동향" 한국대기환경학회 32 (32): 131-157, 2016

      3 박진수, "서울과 인천지역 PM10과 PM2.5 중 2차생성 탄소성분 추정" 한국대기환경학회 21 (21): 131-140, 2005

      4 Silaev, F. C., "Uridine as photochemical actinometer:application to LED-UV flow reactors" 6 (6): 405-409, 2017

      5 Paulot, F., "Unexpected epoxide formation in the gas-phase photooxidation of isoprene" 325 (325): 730-733, 2009

      6 Chen, H., "Titanium dioxide photocatalysis in atmospheric chemistry" 112 (112): 5919-5948, 2012

      7 Tobias, H. J., "Thermal desorption mass spectrometric analysis of organic aerosol formed from reactions of 1-tetradecene and O3 in the presence of alcohols and carboxylic acids" 34 (34): 2105-2115, 2000

      8 Hess, G., "The evaluation of some photochemical smog reaction mechanisms, Temperature and initial composition effects" 26 (26): 625-641, 1992

      9 Takekawa, H., "Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons" 37 (37): 3413-3424, 2003

      10 Cocker, D. R., "State"of-the-art chamber facility for studying atmospheric aerosol chemistry" 35 (35): 2594-2601, 2001

      11 Im, Y., "Simulation of aromatic SOA formation using the lumping model integrated with explicit gas-phase kinetic mechanisms and aerosol-phase reactions" 14 (14): 4013-4027, 2014

      12 Ahlberg, E., "Secondary organic aerosol from VOC mixtures in an oxidation flow reactor" 161 : 210-220, 2017

      13 Limbeck, A., "Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles" 30 (30): 2003

      14 Fry, J. L., "Secondary organic aerosol formation and organic nitrate yield from NO3 oxidation of biogenic hydrocarbons" 48 (48): 11944-11953, 2014

      15 Volkamer, R., "Secondary Organic Aerosol Formation from Acetylene (C2H2):seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase" 9 (9): 1907-1928, 2009

      16 Paulsen, D., "Secondary Organic Aerosol Formation by Irradiation of 1,3,5-Trimethylbenzene−NOx−H2O in a New Reaction Chamber for Atmospheric Chemistry and Physics" 39 (39): 2668-2678, 2005

      17 Lee, S., "SOA formation from the photooxidation of α-pinene in the presence of freshly emitted diesel soot exhaust" 38 (38): 2597-2605, 2004

      18 Kim, H., "Real refractive indices of α- and β-pinene and toluene secondary organic aerosols generated from ozonolysis and photo-oxidation" 115 (115): 2010

      19 Kim, H., "Real refractive indices and volatility of secondary organic aerosol generated from photooxidation and ozonolysis of limonene, α-pinene and toluene" 13 (13): 7711-7723, 2013

      20 Liggio, J., "Reactive uptake of glyoxal by particulate matter" 110 (110): 2005

      21 Surratt, J. D., "Reactive intermediates revealed in secondary organic aerosol formation from isoprene" 107 (107): 6640-6645, 2010

      22 Atkinson, R., "Rate constants for the atmospheric reactions of alkoxy radicals: An updated estimation method" 41 (41): 8468-8485, 2007

      23 Lim, Y. B., "Products and mechanism of secondary organic aerosol formation from reactions of n-alkanes with OH radicals in the presence of NOx" 39 (39): 9229-9236, 2005

      24 Stein, A., "NOAA’s HYSPLIT atmospheric transport and dispersion modeling system" 96 (96): 2059-2077, 2015

      25 이용민, "LC/MSMS를 이용한 광주지역 초미세먼지 MSA 농도 및 육상기원 2차 유기성분과의 관계" 한국대기환경학회 35 (35): 636-646, 2019

      26 Bruns, E., "Inter-comparison of laboratory smog chamber and flow reactor systems on organic aerosol yield and composition" 8 (8): 2315-2332, 2015

      27 King, S. M., "Increased cloud activation potential of secondary organic aerosol for atmospheric mass loadings" 9 (9): 2959-2971, 2009

      28 Luskow, F., "In situ filtration rates of blue mussels (Mytilus edulis) measured by an open-top chamber method" 8 (8): 395-406, 2018

      29 Kalberer, M., "Identification of polymers as major components of atmospheric organic aerosols" 303 (303): 1659-1662, 2004

      30 Wang, Y., "Hydrogen peroxide generation from α-and β-pinene and toluene secondary organic aerosols" 45 (45): 3149-3156, 2011

      31 Jang, M., "Heterogeneous atmospheric aerosol production by acid catalyzed particle-phase reactions" 298 (298): 814-817, 2002

      32 Galloway, M., "Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions" 8 : 20799-20838, 2008

      33 Ervens, B., "Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles" 10 (10): 8219-8244, 2010

      34 Hennigan, C. J., "Gas/particle partitioning of water-soluble organic aerosol in Atlanta" 9 (9): 3613-3628, 2009

      35 Boge, O., "Gas-phase products and secondary organic aerosol formation from the ozonolysis and photooxidation of myrcene" 79 : 553-560, 2013

      36 Claeys, M., "Formation of secondary organic aerosols through photooxidation of isoprene" 303 (303): 1173-1176, 2004

      37 Hynes, R., "Evaluation of two MCM v3. 1 alkene mechanisms using indoor environmental chamber data" 39 (39): 7251-7262, 2005

      38 Atkinson, R., "Evaluated kinetic and photochemical data for atmospheric chemistry:Volume II – gas phase reactions of organic species" 6 (6): 3625-4055, 2006

      39 Kwok, E. S., "Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: an update" 29 (29): 1685-1695, 1995

      40 Lim, Y. B., "Effects of molecular structure on aerosol yields from OH radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of NOx" 43 (43): 2328-2334, 2009

      41 Taatjes, C. A., "Direct measurements of conformer-dependent reactivity of the Criegee intermediate CH3CHOO" 340 (340): 177-180, 2013

      42 Welz, O., "Direct kinetic measurements of Criegee intermediate(CH2OO)formed by reaction of CH2I with O2" 335 (335): 204-207, 2012

      43 Akimoto, H., "Design and characterization of the evacuable and bakable photochemical smog chamber" 13 (13): 471-475, 1979

      44 Wang, X., "Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation" 7 (7): 301-313, 2014

      45 Lee, S. B., "Correlation between light intensity and ozone formation for photochemical smog in urban air of Seoul" 10 (10): 540-549, 2010

      46 Docherty, K. S., "Contributions of organic peroxides to secondary aerosol formed from reactions of monoterpenes with O3" 39 (39): 4049-4059, 2005

      47 Wu, S., "Construction and characterization of an atmospheric simulation smog chamber" 24 (24): 250-258, 2007

      48 Finlayson-Pitts, B. J., "Chemistry of the upper and lower atmosphere: theory, experiments, and applications" Elsevier 1999

      49 Lim, Y. B., "Chemistry of secondary organic aerosol formation from OH radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of NOx" 43 (43): 604-619, 2009

      50 Babar, Z. B., "Characterization of a smog chamber for studying formation and physicochemical properties of secondary organic aerosol" 16 (16): 3102-3113, 2016

      51 Kroll, J. H., "Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds" 110 (110): 2005

      52 Atkinson, R., "Atmospheric degradation of volatile organic compounds" 103 (103): 4605-4638, 2003

      53 Steinfeld, J. I., "Atmospheric chemistry and physics:from air pollution to climate change" 40 (40): 26-26, 1998

      54 Lim, Y., "Aqueous chemistry and its role in secondary organic aerosol (SOA) formation" 10 (10): 10521-10539, 2010

      55 Zhou, X., "Alternately airtight/ventilated emission method : A universal experimental method for determining the VOC emission characteristic parameters of building materials" 130 : 179-189, 2018

      56 Arey, J., "Alkyl Nitrate, Hydroxyalkyl Nitrate, and Hydroxycarbonyl Formation from the NOx−Air Photooxidations of C5−C8n-Alkanes" 105 (105): 1020-1027, 2001

      57 Dimitriou, K., "Aerosol contributions at an urban background site in Eastern Mediterranean –Potential source regions of PAHs in PM10 mass" 598 : 563-571, 2017

      58 Carter, W. P., "A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation" 39 (39): 7768-7788, 2005

      59 Mauldin Iii, R., "A new atmospherically relevant oxidant of sulphur dioxide" 488 (488): 193-196, 2012

      60 Volkamer, R., "A missing sink for gas; phase glyoxal in Mexico City: Formation of secondary organic aerosol" 34 (34): 2007

      61 Hong, Y., "A Study on the High-Ozone Episode and Photochemical Smog (I)" National Instiute of Environmental 13-605, 2001

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 재인증평가 신청대상 (재인증)
      2019-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2018-12-01 평가 등재후보로 하락 (계속평가) KCI등재후보
      2017-12-21 학회명변경 영문명 : The Society For Environmental Technology In Korea -> Korean Society for Environmental Technology KCI등재
      2017-10-19 학술지명변경 외국어명 : Journal of Korean Society Environmental Technology -> Journal of the Korean Society for Environmental Technology KCI등재
      2015-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2013-07-24 학술지명변경 한글명 : 한국환경기술학회 -> 한국환경기술학회지 KCI등재후보
      2013-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      2012-01-01 평가 등재후보학술지 유지 (기타) KCI등재후보
      2010-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.2 0.2 0.19
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.18 0.17 0.246 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼