RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      소스코드 주제를 이용한 인공신경망 기반 경고 분류 방법 = Warning Classification Method Based On Artificial Neural Network Using Topics of Source Code

      한글로보기

      https://www.riss.kr/link?id=A107158141

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Automatic Static Analysis Tools help developers to quickly find potential defects in source code with less effort. However, the tools reports a large number of false positive warnings which do not have to fix. In our study, we proposed an artificial neural network-based warning classification method using topic models of source code blocks. We collect revisions for fixing bugs from software change management (SCM) system and extract code blocks modified by developers. In deep learning stage, topic distribution values of the code blocks and the binary data that present the warning removal in the blocks are used as input and target data in an simple artificial neural network, respectively. In our experimental results, our warning classification model based on neural network shows very high performance to predict label of warnings such as true or false positive.
      번역하기

      Automatic Static Analysis Tools help developers to quickly find potential defects in source code with less effort. However, the tools reports a large number of false positive warnings which do not have to fix. In our study, we proposed an artificial n...

      Automatic Static Analysis Tools help developers to quickly find potential defects in source code with less effort. However, the tools reports a large number of false positive warnings which do not have to fix. In our study, we proposed an artificial neural network-based warning classification method using topic models of source code blocks. We collect revisions for fixing bugs from software change management (SCM) system and extract code blocks modified by developers. In deep learning stage, topic distribution values of the code blocks and the binary data that present the warning removal in the blocks are used as input and target data in an simple artificial neural network, respectively. In our experimental results, our warning classification model based on neural network shows very high performance to predict label of warnings such as true or false positive.

      더보기

      참고문헌 (Reference)

      1 L. M. R. Velicheti, "Towards modeling the behavior of static code analysis tools" 17-20, 2014

      2 Paul J. Werbos, "The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting" John Wiley & Sons 1994

      3 N. Singh, "Short term electricity price forecast based on environmentally adapted generalized neuron" 125 : 127-139, 2017

      4 J. Chang, "Reading tea leaves : How humans interpret topic models" 288-296, 2009

      5 A. Yadav, "Ranking of software developers based on expertise score for bug triaging" 112 : 1-17, 2019

      6 T. Hofmann, "Probabilistic latent semantic indexing" 50-57, 1999

      7 K. Liu, "Mining fix patterns for findbugs violations" 2018

      8 D. M. Blei, "Latent Dirichlet allocation" 3 : 993-1022, 2003

      9 J. Wang, "Is there a golden feature set for static warning identification? : an experimental evaluation" 1-10, 2018

      10 S. Deerwester, "Indexing by latent semantic analysis" 41 (41): 391-407, 1990

      1 L. M. R. Velicheti, "Towards modeling the behavior of static code analysis tools" 17-20, 2014

      2 Paul J. Werbos, "The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting" John Wiley & Sons 1994

      3 N. Singh, "Short term electricity price forecast based on environmentally adapted generalized neuron" 125 : 127-139, 2017

      4 J. Chang, "Reading tea leaves : How humans interpret topic models" 288-296, 2009

      5 A. Yadav, "Ranking of software developers based on expertise score for bug triaging" 112 : 1-17, 2019

      6 T. Hofmann, "Probabilistic latent semantic indexing" 50-57, 1999

      7 K. Liu, "Mining fix patterns for findbugs violations" 2018

      8 D. M. Blei, "Latent Dirichlet allocation" 3 : 993-1022, 2003

      9 J. Wang, "Is there a golden feature set for static warning identification? : an experimental evaluation" 1-10, 2018

      10 S. Deerwester, "Indexing by latent semantic analysis" 41 (41): 391-407, 1990

      11 Z. P. Reynolds, "Identifying and documenting false positive patterns generated by static code analysis tools" 55-61, 2017

      12 Q. Hanam, "Finding patterns in static analysis alerts : improving actionable alert ranking" ACM 152-161, 2014

      13 S. Mani, "Deeptriage : Exploring the effectiveness of deep learning for bug triaging" 171-179, 2019

      14 G. Ian, "Deep Learning" MIT Press 180-184, 2016

      15 A. Goyal, "Cognitive Analytics: Concepts, Methodologies, Tools, and Applications" 1698-1725, 2020

      16 U. Yüksel, "Automated classification of static code analysis alerts : A case study" 532-535, 2013

      17 M. Beller, "Analyzing the state of static analysis : A large-scale evaluation in open source software" 470-481, 2016

      18 S. Ruder, "An overview of gradient descent optimization algorithms"

      19 S. Arai, "A gamified tool for motivating developers to remove warnings of bug pattern tools" 37-42, 2014

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2012-10-31 학술지명변경 한글명 : 컴퓨터 및 통신시스템 -> 정보처리학회논문지. 컴퓨터 및 통신시스템 KCI등재
      2012-10-10 학술지명변경 한글명 : 정보처리학회논문지A -> 컴퓨터 및 통신시스템
      외국어명 : The KIPS Transactions Part : A -> KIPS Transactions on Computer and Communication Systems
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-03-04 학술지명변경 한글명 : 정보처리학회논문지 A, B, C, D -> 정보처리학회논문지 A
      외국어명 : The KIPS Transactions Part : A, B, C, D -> The KIPS Transactions Part : A
      KCI등재
      2009-03-04 학술지명변경 한글명 : 정보처리학회논문지 A -> 정보처리학회논문지A KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2000-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.16 0.16 0.14
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.12 0.11 0.315 0.07
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼