RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      인공지능 : 맵리듀스 프레임워크를 이용한 대용량 공간 추론기의 설계 및 구현 = Artificial Intelligence : Design and Implementation of a Large-Scale Spatial Reasoner Using MapReduce Framework

      한글로보기

      https://www.riss.kr/link?id=A100154866

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In order to answer the questions successfully on behalf of the human in Deep QA environments such as Jeopardy! of the American quiz show, the computer is required to have the capability of fast temporal and spatial reasoning on a large-scale commonsense knowledge base. In this paper, we present a scalable spatial reasoning algorithm for deriving efficiently new directional and topological relations using the MapReduce framework, one of well-known parallel distributed computing environments. The proposed reasoning algorithm assumes as input a large-scale spatial knowledge base including CSD-9 directional relations and RCC-8 topological relations. To infer new directional and topological relations from the given spatial knowledge base, it performs the cross-consistency checks as well as the path-consistency checks on the knowledge base. To maximize the parallelism of reasoning computations according to the principle of the MapReduce framework, we design the algorithm to partition effectively the large knowledge base into smaller ones and distribute them over multiple computing nodes at the map phase. And then, at the reduce phase, the algorithm infers the new knowledge from distributed spatial knowledge bases. Through experiments performed on the sample knowledge base with the MapReduce-based implementation of our algorithm, we proved the high performance of our large-scale spatial reasoner.
      번역하기

      In order to answer the questions successfully on behalf of the human in Deep QA environments such as Jeopardy! of the American quiz show, the computer is required to have the capability of fast temporal and spatial reasoning on a large-scale commonsen...

      In order to answer the questions successfully on behalf of the human in Deep QA environments such as Jeopardy! of the American quiz show, the computer is required to have the capability of fast temporal and spatial reasoning on a large-scale commonsense knowledge base. In this paper, we present a scalable spatial reasoning algorithm for deriving efficiently new directional and topological relations using the MapReduce framework, one of well-known parallel distributed computing environments. The proposed reasoning algorithm assumes as input a large-scale spatial knowledge base including CSD-9 directional relations and RCC-8 topological relations. To infer new directional and topological relations from the given spatial knowledge base, it performs the cross-consistency checks as well as the path-consistency checks on the knowledge base. To maximize the parallelism of reasoning computations according to the principle of the MapReduce framework, we design the algorithm to partition effectively the large knowledge base into smaller ones and distribute them over multiple computing nodes at the map phase. And then, at the reduce phase, the algorithm infers the new knowledge from distributed spatial knowledge bases. Through experiments performed on the sample knowledge base with the MapReduce-based implementation of our algorithm, we proved the high performance of our large-scale spatial reasoner.

      더보기

      참고문헌 (Reference)

      1 "http://www.jeopardy.com/"

      2 J. Urbani, "WebPIE: A Web-scale Parallel Inference Engine using MapReduce" 10 : 59-75, 2012

      3 D. A. Ferrucci, "This is Watson" IBM 56 (56): 2012

      4 I. Horrocks, "SWRL: A Semantic Web Rule Language Combining OWL and RuleML"

      5 S. Batsakis, "SOWL: A Framework for Handling Spatio-Temporal Information in OWL 2.0" 242-249, 2011

      6 A. G. Cohn, "Qualitative Spatial Representation and Reasoning: An Overview" 46 (46): 1-29, 2001

      7 G. Christodoulou, "Qualitative Spatial Reasoning Using Topological and Directional Information in OWL" 1 : 596-602, 2012

      8 M. Stocker, "PelletSpatial: A Hybrid RCC-8 and RDF/OWL Reasoning and Query Engine" 2009

      9 J. Renz, "Maximal Tractable Fragments of the Region Connection Calculus: A Complete Analysis" 1999

      10 J. Renz, "Handbook of Spatial Logics" Springer 161-215, 2007

      1 "http://www.jeopardy.com/"

      2 J. Urbani, "WebPIE: A Web-scale Parallel Inference Engine using MapReduce" 10 : 59-75, 2012

      3 D. A. Ferrucci, "This is Watson" IBM 56 (56): 2012

      4 I. Horrocks, "SWRL: A Semantic Web Rule Language Combining OWL and RuleML"

      5 S. Batsakis, "SOWL: A Framework for Handling Spatio-Temporal Information in OWL 2.0" 242-249, 2011

      6 A. G. Cohn, "Qualitative Spatial Representation and Reasoning: An Overview" 46 (46): 1-29, 2001

      7 G. Christodoulou, "Qualitative Spatial Reasoning Using Topological and Directional Information in OWL" 1 : 596-602, 2012

      8 M. Stocker, "PelletSpatial: A Hybrid RCC-8 and RDF/OWL Reasoning and Query Engine" 2009

      9 J. Renz, "Maximal Tractable Fragments of the Region Connection Calculus: A Complete Analysis" 1999

      10 J. Renz, "Handbook of Spatial Logics" Springer 161-215, 2007

      11 S. Perera, "Hadoop MapReduce Cookbook" Packt Publishing 2013

      12 S. Nam, "Design and Implementation of a Qualitative Spatial Reasoner Based on CSD-9 and RCC-8 Theories" 652-654, 2013

      13 G. Christodoulou, "CHOROS: A Reasoning and Query Engine for Qualitative Spatial Information" Technical University of Crete 2012

      14 D.J. Peuquet, "An Algorithm to Determine the Directional Relationship between Arbitrarily-Shaped Polygons in the Plane" 20 (20): 65-74, 1987

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2012-10-31 학술지명변경 한글명 : 소프트웨어 및 데이터 공학 -> 정보처리학회논문지. 소프트웨어 및 데이터 공학 KCI등재
      2012-10-10 학술지명변경 한글명 : 정보처리학회논문지B -> 소프트웨어 및 데이터 공학
      외국어명 : The KIPS Transactions : Part B -> KIPS Transactions on Software and Data Engineering
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2000-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.35 0.35 0.28
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.23 0.19 0.511 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼