RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      A fully enclosed, 3D printed, hybridized nanogenerator with flexible flux concentrator for harvesting diverse human biomechanical energy

      한글로보기

      https://www.riss.kr/link?id=A107466086

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>Human body motion is highly regarded as a promising source of energy for powering body-worn electronic devices and health monitoring sensors. Transforming the human biomechanical energy into an ...

      <P><B>Abstract</B></P> <P>Human body motion is highly regarded as a promising source of energy for powering body-worn electronic devices and health monitoring sensors. Transforming the human biomechanical energy into an electrical energy provides a sustainable energy to drive those devices and sensors, reducing their battery dependency. This work presents a fully-enclosed wrist-wearable hybridized electromagnetic-triboelectric nanogenerator (FEHN) for effectively scavenging energy from the low-frequency natural human wrist-motion (≤ 5 Hz). The FEHN incorporates the rolling electrostatic induction and electromagnetic induction using a freely moving magnetic ball inside a hollow circular tube. The materials used in 3D printing technology are used as energy harvesting material for easy, quick and worthwhile fabrication of the FEHN. A thin flexible flux concentrating material is introduced to increase the emf and enhances the electromagnetic output performance. The FEHN can harvest energy under the diverse circumstances and irregular wrist-motions, such as swinging, waving, shaking, etc. Following the experiments, the FEHN achieves an average power density of 0.118 mW cm<SUP>−3</SUP> and can drive a commercial wrist-watch continuously for more than 23 min from just 5 s of wrist motion. This successful demonstration renders an effective approach for scavenging wasted biomechanical energy and provides a promising solution towards the development of sustainable power supply for wearable electronic devices and self-powered healthcare monitoring sensors.</P> <P><B>Highlights</B></P> <P> <UL> <LI> A fully enclosed, 3D printed and hybridized nanogenerator, isolated from external environment is newly developed </LI> <LI> Sustainable nanogenerator for powering body-worn wearable electronic devices and healthcare monitoring sensors. </LI> <LI> Highly capable of harvesting energy from diverse wrist motions such as swinging, waving, shaking, twisting, etc. </LI> <LI> A flexible FeSiCr/PDMS composite based flux concentrator around the copper coil is applied to increase the induced emf. </LI> <LI> 5 s of wrist motion is enough to power a commercial electronic wrist-watch for more than 23 min continuously. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼