RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-β1-induced renal injury

      한글로보기

      https://www.riss.kr/link?id=A99794081

      • 저자

        Hunjoo, Ha (Ewha Womans University College of Pharmacy, and Center for Cell Signaling and Drug Discovery Research, Seoul Korea) ;  Hyunjin, Noh (Hyonam Kidney Laboratory, Soon Chun Hyang University) ;  Eun Young, Oh (Ewha Womans University College of Pharmacy, and Center for Cell Signaling and Drug Discovery Research, Seoul Korea) ;  Ji Yeon, Seo (Ewha Womans University College of Pharmacy, and Center for Cell Signaling and Drug Discovery Research, Seoul Korea, andHyonam Kidney Laboratory, Soon Chun Hyang University) ;  Mi Ra, Yu (Hyonam Kidney Laboratory, Soon Chun Hyang University) ;  Young Ok, Kim (Hyonam Kidney Laboratory, Soon Chun Hyang University) ;  Hi Buhl, Lee (Hyonam Kidney Laboratory, Soon Chun Hyang University)

      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2010

      • 작성언어

        English

      • 자료형태

        학술저널

      • 수록면

        79-90(12쪽)

      • 제공처
      • 중단사유

        ※ 저작자의 요청에 따라 해당 논문은 원문이 제공되지 않습니다.

      • 소장기관
      • ※ 대학의 dCollection(지식정보 디지털 유통체계)을 통하여 작성된 목록정보입니다.
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Excessive accumulation of extracellular matrix (ECM) in the kidneys and epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells contributes to the renal fibrosis that is associated with diabetic nephropathy. Histone deacetylase (HDAC) determines the acetylation status of histones and thereby controls the regulation of gene expression. This study examined the effect of HDAC inhibition on renal fibrosis induced by diabetes or transforming growth factor (TGF)-β1 and determined the role of reactive oxygen species (ROS) as mediators of HDAC activation. In streptozotocin (STZ)-induced diabetic kidneys and TGF-β1-treated normal rat kidney tubular epithelial cells (NRK52-E), we found that trichostatin A, a nonselective HDAC inhibitor, decreased mRNA and protein expressions of ECM components and prevented EMT. Valproic acid and class I-selective HDAC inhibitor SK-7041 also showed similar effects in NRK52-E cells. Among the six HDACs tested (HDAC-1 through -5 and HDAC-8), HDAC-2 activity significantly increased in the kidneys of STZ-induced diabetic rats and db/db mice and TGF-β1-treated NRK52-E cells. Levels of mRNA expression of fibronectin and α-smooth muscle actin were decreased, whereas E-cadherin mRNA was increased when HDAC-2 was knocked down using RNA interference in NRK52-E cells. Interestingly, hydrogen peroxide increased HDAC-2 activity, and the treatment with an antioxidant, N-acetylcystein, almost completely reduced TGF-β1-induced activation of HDAC-2. These findings suggest that HDAC-2 plays an important role in the development of ECM accumulation and EMT in diabetic kidney and that ROS mediate TGF-β1-induced activation of HDAC-2.
      번역하기

      Excessive accumulation of extracellular matrix (ECM) in the kidneys and epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells contributes to the renal fibrosis that is associated with diabetic nephropathy. Histone deacetylase (H...

      Excessive accumulation of extracellular matrix (ECM) in the kidneys and epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells contributes to the renal fibrosis that is associated with diabetic nephropathy. Histone deacetylase (HDAC) determines the acetylation status of histones and thereby controls the regulation of gene expression. This study examined the effect of HDAC inhibition on renal fibrosis induced by diabetes or transforming growth factor (TGF)-β1 and determined the role of reactive oxygen species (ROS) as mediators of HDAC activation. In streptozotocin (STZ)-induced diabetic kidneys and TGF-β1-treated normal rat kidney tubular epithelial cells (NRK52-E), we found that trichostatin A, a nonselective HDAC inhibitor, decreased mRNA and protein expressions of ECM components and prevented EMT. Valproic acid and class I-selective HDAC inhibitor SK-7041 also showed similar effects in NRK52-E cells. Among the six HDACs tested (HDAC-1 through -5 and HDAC-8), HDAC-2 activity significantly increased in the kidneys of STZ-induced diabetic rats and db/db mice and TGF-β1-treated NRK52-E cells. Levels of mRNA expression of fibronectin and α-smooth muscle actin were decreased, whereas E-cadherin mRNA was increased when HDAC-2 was knocked down using RNA interference in NRK52-E cells. Interestingly, hydrogen peroxide increased HDAC-2 activity, and the treatment with an antioxidant, N-acetylcystein, almost completely reduced TGF-β1-induced activation of HDAC-2. These findings suggest that HDAC-2 plays an important role in the development of ECM accumulation and EMT in diabetic kidney and that ROS mediate TGF-β1-induced activation of HDAC-2.

      더보기

      목차 (Table of Contents)

      • MATERIALS AND METHODS
      • RESULTS
      • DISCUSSION
      • ACKKNOWLEDGMENTS
      • REFERENCES
      • MATERIALS AND METHODS
      • RESULTS
      • DISCUSSION
      • ACKKNOWLEDGMENTS
      • REFERENCES
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼