RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCI SCIE SCOPUS

      Detailed Treatment of the Nonlinear Optical Properties of Nonlinear Photonic Crystals

      한글로보기

      https://www.riss.kr/link?id=A104193751

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Nonlinear photonic crystals were designed such that the center wavelength of the photonic bandgap could be located near 800 nm. The transmission spectrum was obtained by applying the optical transfer matrix formalism to the photonic crystal. The transmission spectrum of the photonic crystal revealed a defect mode resonance and a broad photonic band gap. The spatial optical intensity distribution was obtained by applying the Helmholtz equation to the photonic crystal structure. The intensity distribution exhibited strong confinement of the optical field inside the defect layer. The spatial variation of the electric permittivity was induced by the spatial optical intensity distribution inside the nonlinear defect layer. The nonlinear optical properties of these nonlinear photonic crystals were investigated by applying the finite-difference time-domain method (FDTD) to the photonic crystal structure with a spatially varying electric permittivity. The nonlinear transmission characteristics obtained by using the FDTD method were compared with those obtained by using the spatial average of the spatial optical intensity distribution. The effects of the nonlinear absorption, the nonlinear refraction, and the optical intensity on the nonlinear transmission were investigated.
      번역하기

      Nonlinear photonic crystals were designed such that the center wavelength of the photonic bandgap could be located near 800 nm. The transmission spectrum was obtained by applying the optical transfer matrix formalism to the photonic crystal. The trans...

      Nonlinear photonic crystals were designed such that the center wavelength of the photonic bandgap could be located near 800 nm. The transmission spectrum was obtained by applying the optical transfer matrix formalism to the photonic crystal. The transmission spectrum of the photonic crystal revealed a defect mode resonance and a broad photonic band gap. The spatial optical intensity distribution was obtained by applying the Helmholtz equation to the photonic crystal structure. The intensity distribution exhibited strong confinement of the optical field inside the defect layer. The spatial variation of the electric permittivity was induced by the spatial optical intensity distribution inside the nonlinear defect layer. The nonlinear optical properties of these nonlinear photonic crystals were investigated by applying the finite-difference time-domain method (FDTD) to the photonic crystal structure with a spatially varying electric permittivity. The nonlinear transmission characteristics obtained by using the FDTD method were compared with those obtained by using the spatial average of the spatial optical intensity distribution. The effects of the nonlinear absorption, the nonlinear refraction, and the optical intensity on the nonlinear transmission were investigated.

      더보기

      참고문헌 (Reference)

      1 E. Yablonovich, 58 : 2059-, 1987

      2 S. John, 58 : 2486-, 1987

      3 R. A. Ganeev, 36 : 949-, 2004

      4 J. Wang, 11 : 024001-, 2009

      5 M. C. Larciprete, 93 : 5013-, 2003

      6 J. Bonse, 221 : 215-, 2004

      7 I. V. Guryev, 84 : 83-, 2006

      8 M. Imada, 20 : 873-, 2002

      9 D. R. Solli, 24 : 3864-, 2006

      10 S. Y. Lin, 282 : 274-, 1998

      1 E. Yablonovich, 58 : 2059-, 1987

      2 S. John, 58 : 2486-, 1987

      3 R. A. Ganeev, 36 : 949-, 2004

      4 J. Wang, 11 : 024001-, 2009

      5 M. C. Larciprete, 93 : 5013-, 2003

      6 J. Bonse, 221 : 215-, 2004

      7 I. V. Guryev, 84 : 83-, 2006

      8 M. Imada, 20 : 873-, 2002

      9 D. R. Solli, 24 : 3864-, 2006

      10 S. Y. Lin, 282 : 274-, 1998

      11 S. Noda, 407 : 608-, 2000

      12 O. Painter, 284 : 1819-, 1999

      13 J. E. Shen, 88 : 011113-, 2006

      14 Y. R. Shen, "The Principles of Nonlinear Optics" John Wiley & Sons 16-17, 1991

      15 J. D. Joannopoulos, "Photonic Crystals: Molding the Flow of Light, Chap. 1, Chap. 2 and Appendix C." Princeton University Press 1995

      16 E. Hecht, "Optics, Chap. 9" Addison-Wesley 1987

      17 E. D. Palik, "Handbook of Optical Constants and Solids" Academic 1985

      18 A. Taflove, "Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed" Artech House 2005

      19 J. D. Jackson, "Classical Electrodynamics, 3rd ed" John Wiley & Sons 1999

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 SCI 등재 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2000-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.47 0.15 0.31
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.26 0.2 0.26 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼