RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      압력 하중을 받는 곡면 패널의 3차원 비선형 구조해석의 신뢰성 연구

      한글로보기

      https://www.riss.kr/link?id=T16957320

      • 저자
      • 발행사항

        진주 : 경상국립대학교 항공우주특성화대학원, 2024

      • 학위논문사항
      • 발행연도

        2024

      • 작성언어

        한국어

      • 주제어
      • 발행국(도시)

        경상남도

      • 기타서명

        A Reliability Study of Three-Dimensional Nonlinear Structural Analysis for Curved Panel Under Pressure

      • 형태사항

        vi, 39 p. : 삽화 ; 30 cm

      • 일반주기명

        경상국립대학교 논문은 저작권에 의해 보호받습니다.
        지도교수: 최진호

      • UCI식별코드

        I804:48003-000000033854

      • 소장기관
        • 경상국립대학교 도서관 소장기관정보
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Recently, in the aerospace industry, the importance about analysis is increasing, demanding more accurate and reliable results for structural integrity. Therefore, one common approach in the aerospace industry is to evaluate the structural integrity of the structures using commercial FEM programs, which are based on the finite element method.
      Sheet metal components such as the aircraft's external skin or inlet duct skin are usually designed with curvature to enhance aerodynamic efficiency. Additionally, for weight reduction, the process of Chemical Milling, which involves controlled corrosion to adjust the thickness, is applied. In such cases, stress concentration occurs in the area for rapidly decreased thickness due to chemical milling. However, these challenges can be mitigated by applying reinforcement measures such as application of stiffeners or thickness increase to ensure structural integrity.
      Generally, when analyzing panel with curvature subjected to pressure loads normal to the surface, linear analysis results in the same stress distribution regardless of the load direction, with internally applied loads yielding results with opposite signs. However, in nonlinear analysis, if the panel is subjected to bursting loads (positive pressure, acting from the concave side outboard), it exhibits similar behavior to the linear analysis. On the other hand, when subjected to crushing loads (negative pressure, acting from the convex side inboard), the panel's displacement changes abruptly even with a slight increase in pressure, leading to the occurrence of oil canning phenomena, which depend on the panel's curvature, thickness, load magnitude, and shape.
      In this study, we investigated the difference between linear and nonlinear analyses when applying pressure normal to the surface of panels with curvature and chemical milling. Furthermore, we examined stress concentrations at the edge, which is the weak point, when oil canning phenomena occur. We also evaluated the structural effect for reinforced designs, such as a application of stiffeners or thickness increase, to prevent oil canning. Finally, reliability of the analysis is confirmed by comparing the predicted values with structural tests.
      번역하기

      Recently, in the aerospace industry, the importance about analysis is increasing, demanding more accurate and reliable results for structural integrity. Therefore, one common approach in the aerospace industry is to evaluate the structural integrity o...

      Recently, in the aerospace industry, the importance about analysis is increasing, demanding more accurate and reliable results for structural integrity. Therefore, one common approach in the aerospace industry is to evaluate the structural integrity of the structures using commercial FEM programs, which are based on the finite element method.
      Sheet metal components such as the aircraft's external skin or inlet duct skin are usually designed with curvature to enhance aerodynamic efficiency. Additionally, for weight reduction, the process of Chemical Milling, which involves controlled corrosion to adjust the thickness, is applied. In such cases, stress concentration occurs in the area for rapidly decreased thickness due to chemical milling. However, these challenges can be mitigated by applying reinforcement measures such as application of stiffeners or thickness increase to ensure structural integrity.
      Generally, when analyzing panel with curvature subjected to pressure loads normal to the surface, linear analysis results in the same stress distribution regardless of the load direction, with internally applied loads yielding results with opposite signs. However, in nonlinear analysis, if the panel is subjected to bursting loads (positive pressure, acting from the concave side outboard), it exhibits similar behavior to the linear analysis. On the other hand, when subjected to crushing loads (negative pressure, acting from the convex side inboard), the panel's displacement changes abruptly even with a slight increase in pressure, leading to the occurrence of oil canning phenomena, which depend on the panel's curvature, thickness, load magnitude, and shape.
      In this study, we investigated the difference between linear and nonlinear analyses when applying pressure normal to the surface of panels with curvature and chemical milling. Furthermore, we examined stress concentrations at the edge, which is the weak point, when oil canning phenomena occur. We also evaluated the structural effect for reinforced designs, such as a application of stiffeners or thickness increase, to prevent oil canning. Finally, reliability of the analysis is confirmed by comparing the predicted values with structural tests.

      더보기

      목차 (Table of Contents)

      • 목 차 i
      • 표 목차 iii
      • 그림 목차 iv
      • ABSTRACT v
      • 목 차 i
      • 표 목차 iii
      • 그림 목차 iv
      • ABSTRACT v
      • Ⅰ. 서 론 1
      • 1.1 연구 배경 1
      • 1.2 Chemical Milling 공법 2
      • 1.3 Oil Canning 현상 4
      • 1.4 연구 목적 및 범위 6
      • Ⅱ. 이론적 배경 7
      • 2.1 선형 정적 해석 7
      • 2.1.1 선형 해석 7
      • 2.1.2 정적 해석 8
      • 2.1.3 유한 요소 해석의 선형 정적 해석 9
      • 2.2 선형 좌굴 해석 10
      • 2.2.1 탄성 좌굴 10
      • 2.2.2 유한 요소 해석의 선형 좌굴 해석 11
      • 2.3 비선형 해석 12
      • 2.3.1 기하 비선형 14
      • 2.3.2 재료 비선형 14
      • 2.3.3 접촉 비선형 14
      • 2.4 구조 강도 평가방법 15
      • Ⅲ. 구조 시험 16
      • 3.1 구조 시험 16
      • 3.1.1 구조 압력 시험 16
      • 3.1.2 측정기기 17
      • 3.1.3 데이터 획득 시스템 17
      • Ⅳ. 해석 결과 18
      • 4.1 하중 및 FE Model 구성 18
      • 4.1.1 해석 적용 하중 18
      • 4.1.2 해석 모델 구성 19
      • 4.1.3 재료 물성치 적용 20
      • 4.2 선형 해석 결과 22
      • 4.2.1 선형 해석 결과 22
      • 4.2.2 선형 좌굴 해석 결과 24
      • 4.3 비선형 해석 결과 25
      • 4.3.1 비선형 해석 결과 25
      • 4.3.2 선형 - 비선형 해석 결과 비교 30
      • 4.4 Oil Canning 방지 설계 방안 32
      • 4.5 구조 압력 시험 결과 35
      • 4.5.1 Strain Gage 부착 35
      • 4.5.2 시험 - 비선형 해석 변형율 결과 비교 36
      • Ⅴ. 결론 37
      • 참 고 문 헌 39
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼