1 Moses, S. R., "Vessel-on-a-chip models for studying microvascular physiology, transport, and function in vitro" 320 : C92-C105, 2020
2 Frentzas, S., "Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases" 22 : 1294-1302, 2016
3 Donnem, T., "Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment?" 2 : 427-436, 2013
4 Seano, G., "Vessel co-option in glioblastoma: emerging insights and opportunities" 23 : 9-16, 2020
5 Kuczynski, E. A., "Vessel co-option in cancer" 16 : 469-493, 2019
6 Kuczynski, E. A., "Vessel co-option and resistance to anti-angiogenic therapy" 23 : 55-74, 2020
7 Kim, S., "Vasculature-on-a-chip for in vitro disease models" 4 : 8-, 2017
8 Ribatti, D., "Vascular co-option and other alternative modalities of growth of tumor vasculature in glioblastoma" 12 : 874554-, 2022
9 Wang, Y. I., "UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems" 18 : 2563-2574, 2018
10 Ko, J., "Tumor spheroid-on-a-chip: a standardized microfluidic culture platform for investigating tumor angiogenesis" 19 : 2822-2833, 2019
1 Moses, S. R., "Vessel-on-a-chip models for studying microvascular physiology, transport, and function in vitro" 320 : C92-C105, 2020
2 Frentzas, S., "Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases" 22 : 1294-1302, 2016
3 Donnem, T., "Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment?" 2 : 427-436, 2013
4 Seano, G., "Vessel co-option in glioblastoma: emerging insights and opportunities" 23 : 9-16, 2020
5 Kuczynski, E. A., "Vessel co-option in cancer" 16 : 469-493, 2019
6 Kuczynski, E. A., "Vessel co-option and resistance to anti-angiogenic therapy" 23 : 55-74, 2020
7 Kim, S., "Vasculature-on-a-chip for in vitro disease models" 4 : 8-, 2017
8 Ribatti, D., "Vascular co-option and other alternative modalities of growth of tumor vasculature in glioblastoma" 12 : 874554-, 2022
9 Wang, Y. I., "UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems" 18 : 2563-2574, 2018
10 Ko, J., "Tumor spheroid-on-a-chip: a standardized microfluidic culture platform for investigating tumor angiogenesis" 19 : 2822-2833, 2019
11 Rada, M., "Tumor microenvironment conditions that favor vessel co-option in colorectal cancer liver metastases: a theoretical model" 71 : 52-64, 2021
12 Seo, S., "Triculture model of in vitro bbb and its application to study BBB-associated chemosensitivity and drug delivery in glioblastoma" 32 : 2106860-, 2022
13 Alves, A. H., "The advances in glioblastoma on-a-chip for therapy approaches" 14 : 869-, 2022
14 Sarveswaran, K., "Synthetic capillaries to control microscopic blood flow" 6 : 21885-, 2016
15 Rouwkema, J., "Supply of nutrients to cells in engineered tissues" 26 : 163-178, 2009
16 Valiente, M., "Serpins promote cancer cell survival and vascular co-option in brain metastasis" 156 : 1002-1016, 2014
17 배진승 ; Han Seogkyu ; 박성수, "Recent Advances in 3D Bioprinted Tumor Microenvironment" 한국바이오칩학회 14 (14): 137-147, 2020
18 Pollet, A. M. A. O., "Recapitulating the vasculature using organ-on-chip technology" 7 : 17-, 2020
19 Kienast, Y., "Real-time imaging reveals the single steps of brain metastasis formation" 16 : 116-122, 2010
20 Kim, M. -H., "Organ-on-a-chip for studying gut-brain interaction mediated by extracellular vesicles in the gut microenvironment" 22 : 13513-, 2021
21 Delannoy, E., "Multi-layered human blood vessels-on-chip design using double viscous finger patterning" 10 : 797-, 2022
22 임정은 ; Ching Hanna ; Yoon Jeong-Kee ; 전누리 ; Kim YongTae, "Microvascularized tumor organoids-on-chips: advancing preclinical drug screening with pathophysiological relevance" 나노기술연구협의회 8 (8): 1-16, 2021
23 Kwak, B. S., "Microfluidic skin chip with vasculature for recapitulating the immune response of the skin tissue" 117 : 1853-1863, 2020
24 김재원 ; 김세인 ; Shahab Uddin ; 이성식 ; 박성수, "Microfabricated Stretching Devices for Studying the Effects of Tensile Stress on Cells and Tissues" 한국바이오칩학회 16 (16): 366-375, 2022
25 Pereira, E. R., "Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice" 359 : 1403-1407, 2018
26 Jeong, H. -S., "Investigation of the lack of angiogenesis in the formation of lymph node metastases" 107 : 2015
27 Kumar, S., "Intra-tumoral metabolic zonation and resultant phenotypic diversification are dictated by blood vessel proximity" 30 : 201-211.e6, 2019
28 Kwak, T. J., "In vitro modeling of solid tumor interactions with perfused blood vessels" 10 : 20142-, 2020
29 Lee, Y., "Gut-kidney axis on chip for studying effects of antibiotics on risk of hemolytic uremic syndrome by shiga toxin-producing Escherichia coli" 13 : 775-, 2021
30 Bernstein, J. J., "Glioblastoma cells do not intravasate into blood vessels" 36 : 124-132, 1995
31 Elena, A., "Extraneural metastases in glioblastoma patients: two cases with YKL-40-positive glioblastomas and a meta-analysis of the literature" 39 : 37-46, 2016
32 서영준 ; 조원호 ; 강동완 ; 차승헌, "Extraneural Metastasis of Glioblastoma Multiforme Presenting as an Unusual Neck Mass" 대한신경외과학회 51 (51): 147-150, 2012
33 Xiao, Y., "Ex vivo dynamics of human glioblastoma cells in a microvasculature-on-a-chip system correlates with tumor heterogeneity and subtypes" 6 : 1801531-, 2019
34 Aazmi, A., "Engineered vasculature for organ-on-a-chip systems" 9 : 131-147, 2022
35 Norton, K. -A., "Effects of endothelial cell proliferation and migration rates in a computational model of sprouting angiogenesis" 6 : 36992-, 2016
36 Leung, E., "Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway" 36 : 2680-2692, 2017
37 손재정 ; 김희훈 ; 이준희 ; 정원일 ; 박제균, "Assembly and Disassembly of the Micropatterned Collagen Sheets Containing Cells for Location‑Based Cellular Function Analysis" 한국바이오칩학회 15 (15): 77-89, 2021
38 Leenders, W. P. J., "Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option" 10 : 6222-6230, 2004
39 Seo, S., "An engineered neurovascular unit for modeling neuroinflammation" 13 : 35039-, 2021
40 Beck, B., "A vascular niche and a VEGF–Nrp1 loop regulate the initiation and stemness of skin tumours" 478 : 399-403, 2011
41 Cuddapah, V. A., "A neurocentric perspective on glioma invasion" 15 : 455-465, 2014
42 Sung, J. H., "A microfluidic device for a pharmacokinetic–pharmacodynamic (PK–PD) model on a chip" 10 : 446-455, 2010
43 Lee, D. W., "A microfluidic chip with gravity-induced unidirectional flow for perfusion cell culture" 35 : e2701-, 2019
44 Han, S., "3D bioprinted vascularized tumour for drug testing" 21 : 2993-, 2020