RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      토픽 모델링에 기반한 온라인 상품 평점 예측을 위한 온라인 사용 후기 분석

      한글로보기

      https://www.riss.kr/link?id=A103540129

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Customers have been affected by others’ opinions when they make a purchase. Thanks to the development of technologies, people are sharing their experiences such as reviews or ratings through online or social network services, However, although ratings are intuitive information for others, many reviews include only texts without ratings. Also, because of huge amount of reviews, customers and companies can’t read all of them so they are hard to evaluate to a product without ratings. Therefore, in this study, we propose a methodology to predict ratings based on reviews for a product. In a methodology, we first estimate the topic-review matrix using the Latent Dirichlet Allocation technic which is widely used in topic modeling. Next, we predict ratings based on the topic-review matrix using the artificial neural network model which is based on the backpropagation algorithm. Through experiments with actual reviews, we find that our methodology can predict ratings based on customers’ reviews. And our methodology performs better with reviews which include certain opinions. As a result, our study can be used for customers and companies that want to know exactly a product with ratings. Moreover, we hope that our study leads to the implementation of future studies that combine machine learning and topic modeling.
      번역하기

      Customers have been affected by others’ opinions when they make a purchase. Thanks to the development of technologies, people are sharing their experiences such as reviews or ratings through online or social network services, However, although ratin...

      Customers have been affected by others’ opinions when they make a purchase. Thanks to the development of technologies, people are sharing their experiences such as reviews or ratings through online or social network services, However, although ratings are intuitive information for others, many reviews include only texts without ratings. Also, because of huge amount of reviews, customers and companies can’t read all of them so they are hard to evaluate to a product without ratings. Therefore, in this study, we propose a methodology to predict ratings based on reviews for a product. In a methodology, we first estimate the topic-review matrix using the Latent Dirichlet Allocation technic which is widely used in topic modeling. Next, we predict ratings based on the topic-review matrix using the artificial neural network model which is based on the backpropagation algorithm. Through experiments with actual reviews, we find that our methodology can predict ratings based on customers’ reviews. And our methodology performs better with reviews which include certain opinions. As a result, our study can be used for customers and companies that want to know exactly a product with ratings. Moreover, we hope that our study leads to the implementation of future studies that combine machine learning and topic modeling.

      더보기

      참고문헌 (Reference)

      1 강범일, "토픽 모델링을 이용한 신문 자료의 오피니언 마이닝에 대한 연구" 한국문헌정보학회 47 (47): 315-334, 2013

      2 강정은, "인공신경망을 활용한 서울시 도시기반시설 침수위험지역 분석" 대한토목학회 35 (35): 997-1006, 2015

      3 심홍기, "인공신경망을 이용한 대대전투간 작전지속능력 예측" 한국지능정보시스템학회 14 (14): 25-39, 2008

      4 채승훈, "사용자 리뷰를 통한 소셜커머스와 오픈마켓의 이용경험 비교분석" 한국지능정보시스템학회 21 (21): 53-77, 2015

      5 Braun, L., "Towards Automatic Formulation of A Physician’s Information Needs" 2005

      6 Song, Y., "Topic and Keyword Re-Ranking for LDAbased Topic Modeling" 1757-1760, 2009

      7 Turney, P.D., "Thumbs Up or Thumbs Down? : Semantic Orientation Applied to Unsupervised Classification of Reviews" 417-424, 2002

      8 Andrew, P.B., "The Use of the Area Under the ROC Curve in the Evaluation of Machine Learning Algorithms" 30 (30): 1145-1159, 1997

      9 Chevalier, J.A., "The Effect of Word of Mouth on Sales : Online Book Reviews" 43 (43): 345-354, 2006

      10 Cui, G., "The Effect of Online Consumer Reviews on New Product Sales" 17 (17): 39-58, 2012

      1 강범일, "토픽 모델링을 이용한 신문 자료의 오피니언 마이닝에 대한 연구" 한국문헌정보학회 47 (47): 315-334, 2013

      2 강정은, "인공신경망을 활용한 서울시 도시기반시설 침수위험지역 분석" 대한토목학회 35 (35): 997-1006, 2015

      3 심홍기, "인공신경망을 이용한 대대전투간 작전지속능력 예측" 한국지능정보시스템학회 14 (14): 25-39, 2008

      4 채승훈, "사용자 리뷰를 통한 소셜커머스와 오픈마켓의 이용경험 비교분석" 한국지능정보시스템학회 21 (21): 53-77, 2015

      5 Braun, L., "Towards Automatic Formulation of A Physician’s Information Needs" 2005

      6 Song, Y., "Topic and Keyword Re-Ranking for LDAbased Topic Modeling" 1757-1760, 2009

      7 Turney, P.D., "Thumbs Up or Thumbs Down? : Semantic Orientation Applied to Unsupervised Classification of Reviews" 417-424, 2002

      8 Andrew, P.B., "The Use of the Area Under the ROC Curve in the Evaluation of Machine Learning Algorithms" 30 (30): 1145-1159, 1997

      9 Chevalier, J.A., "The Effect of Word of Mouth on Sales : Online Book Reviews" 43 (43): 345-354, 2006

      10 Cui, G., "The Effect of Online Consumer Reviews on New Product Sales" 17 (17): 39-58, 2012

      11 Park, D.H., "The Effect of On-line Consumer Reviews on Consumer Purchasing Intention : The Moderating Role of Involvement" 11 (11): 125-148, 2007

      12 Lee, J., "The Effect of Negative Online Consumer Reviews on Product Attitude : An Information Processing View" 7 (7): 341-352, 2008

      13 Blei, D.M., "Text Mining : Classification, Clustering, and Applications" Chapman and Hall/CRC 2009

      14 Pang, B., "Seeing Stars : Exploiting Class Relationships for Sentiment Categorization with Respect to Rating Scales" 115-124, 2005

      15 Sun, Z., "Prediction of Protein Supersecondary Structures Based on the Artificial Neural Network Method" 10 (10): 763-769, 1997

      16 Lu, Y., "Opinion Integration through Semi-Supervised Topic Modeling" 121-130, 2008

      17 Statistic Korea, "Online Shopping in 2016"

      18 Chatterjee, P., "Online Reviews : Do Consumers use Them?" 129-134, 2001

      19 Bisgin, H., "Mining FDA Drug Labels Using An Unsupervised Learning Technique-Topic Modeling" 12 (12): 1-8, 2011

      20 Tam, K.Y., "Managerial Applications of Neural Networks : The Case of Bank Failure Predictions" 38 (38): 926-947, 1992

      21 Tsang, A.S., "Is A"star"Worth A Thousand Words? The Interplay between Product-Review Texts and Rating Valences" 43 (43): 1269-1280, 2009

      22 황유섭, "Facilitating Web Service Taxonomy Generation : An Artificial Neural Network based Framework, A Prototype Systems, and Evaluation" 한국지능정보시스템학회 16 (16): 33-54, 2010

      23 Minka, T., "Expectation-Propagation for The Generative Aspect Model" 352-359, 2002

      24 Hong, L., "Empirical Study of Topic Modeling in Twitter" 80-88, 2010

      25 Witten, I.H., "Data Mining : Practical Machine Learning Tools and Techniques, Morgan Kaufmann Series in Data Management Systems" 2005

      26 Huang, Z., "Credit Rating Analysis with Support Vector Machines and Neural Networks : A Market Comparative Study" 37 (37): 543-558, 2004

      27 Jo, H.K., "Bankruptcy Prediction Using Case-Based Reasoning, Neural Networks, and Discriminant Analysis" 13 (13): 97-108, 1997

      28 Krizhevsky, A., "Advances in Neural Information Processing Systems" 1097-1105, 2012

      29 Tang, H., "A Survey on Sentiment Detection of Reviews" 36 (36): 10760-10773, 2009

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2014-05-28 학술지명변경 외국어명 : Journal of the Korea Society of IT Services -> Journal of Information Technology Services KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2009-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2008-01-01 평가 등재후보학술지 유지 (등재후보2차) KCI등재후보
      2007-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2006-08-11 학술지명변경 한글명 : 한국SI학회지 -> 한국IT서비스학회지
      외국어명 : Journal of the Korea Society of System Integration -> Journal of the Korea Society of IT Services
      KCI등재후보
      2006-08-11 학회명변경 한글명 : 한국SI학회 -> 한국IT서비스학회
      영문명 : Korea Society Of System Integration -> Korea Society Of IT Services
      KCI등재후보
      2006-06-21 학회명변경 한글명 : 한국SI학회 -> 한국IT서비스학회
      영문명 : Korea Society Of System Integration -> Korea Society Of IT Services
      KCI등재후보
      2005-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.49 0.49 0.5
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.48 0.47 0.627 0.17
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼