본 논문에서는 외부로부터 제공되는 학습데이타에 신경회로망의 자기적응화(self-adaptation)를 이룩하기 위한 접근론이 기술된다. 이러한 문제점은 신경회로망의 학습이론, 즉 현재의 학습 데...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A101071600
1994
English
KCI등재,SCOPUS,ESCI
학술저널
25-36(12쪽)
0
상세조회0
다운로드국문 초록 (Abstract)
본 논문에서는 외부로부터 제공되는 학습데이타에 신경회로망의 자기적응화(self-adaptation)를 이룩하기 위한 접근론이 기술된다. 이러한 문제점은 신경회로망의 학습이론, 즉 현재의 학습 데...
본 논문에서는 외부로부터 제공되는 학습데이타에 신경회로망의 자기적응화(self-adaptation)를 이룩하기 위한 접근론이 기술된다. 이러한 문제점은 신경회로망의 학습이론, 즉 현재의 학습 데이터에 적절한 신경회로망이 가중치 벡터들(weight vectors)의 개선 방법론에 기인된다. 이들에 관련된 문제점들의 이론적 검토와 아울러 신경회로망의 학습에 대한 근본적인 요소들이 재조명된다. 현재 가장 널리 이용되고 있는 후방 전달(back-propagation) 학습법과 비교함으로써, 본 연구에서 제안된 자기적응 학습법의 유용성과 우위성을 컴퓨터 모의시험 결과로 입증하게 된다.
다국어 초록 (Multilingual Abstract)
A problem of making a neural network learning self-adaptive to the training set supplied is addressed in this paper. This arises from the aspect in choice of an adequate stepsize for the update of the current weigh vectors according to the training pa...
A problem of making a neural network learning self-adaptive to the training set supplied is addressed in this paper. This arises from the aspect in choice of an adequate stepsize for the update of the current weigh vectors according to the training pairs. Related issues in this attempt are raised and fundamentals in neural network learning are introduced. In comparison to the most popular back-propagation scheme, the usefulness and superiority of the proposed weight update algorithm are illustrated by examing the identification of unknown nonlinear systems only from measurements.
Discriminative Training of Predictive Neural Network Models
Pseudo-Cepstral Representation of Speech Signal and Its Application to Speech Recognition
Detection of Glottal Closure Instant using the property of G-peak
Development of a Read-time Voice Dialing System Using Discrete Hidden Markov Models