RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      통제변수 기반 Gradient를 이용한 확률적 최적화 기법 = Stochastic Optimization Method Using Gradient Based on Control Variates

      한글로보기

      https://www.riss.kr/link?id=A105685996

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, we investigate an optimal allocation of constant service resources in stochastic system to optimize the expected performance of interest. For this purpose, we use the control variates to estimate the gradients of expected performance with respect to given resource parameters, and apply these estimated gradients in stochastic optimization algorithm to find the optimal allocation of resources. The proposed gradient estimation method is advantageous in that it uses simulation results of a single design point without increasing the number of design points in simulation experiments and does not need to describe the logical relationship among realized performance of interest and perturbations in input parameters. We consider the applications of this research to various models and extension of input parameter space as the future research.
      번역하기

      In this paper, we investigate an optimal allocation of constant service resources in stochastic system to optimize the expected performance of interest. For this purpose, we use the control variates to estimate the gradients of expected performance wi...

      In this paper, we investigate an optimal allocation of constant service resources in stochastic system to optimize the expected performance of interest. For this purpose, we use the control variates to estimate the gradients of expected performance with respect to given resource parameters, and apply these estimated gradients in stochastic optimization algorithm to find the optimal allocation of resources. The proposed gradient estimation method is advantageous in that it uses simulation results of a single design point without increasing the number of design points in simulation experiments and does not need to describe the logical relationship among realized performance of interest and perturbations in input parameters. We consider the applications of this research to various models and extension of input parameter space as the future research.

      더보기

      참고문헌 (Reference)

      1 권치명, "퍼터베이션 분석을 이용한 대기행렬 네트워크의 최적화" 9 (9): 89-102, 2000

      2 Wilson, J. R, "Variance Reduction in Queueing Simulation Using Generalized Concomitant Variables" 19 : 129-153, 1984

      3 Wieland J. R., "Stochastic gradient Estimation Using a Single Design Point" 390-397, 2006

      4 Pritsker, A. A. B., "Simulation with Visual SLAM and AWeSim" John Wiley & Sons 1999

      5 Andradottir,S., "Simulation Optimization" John Wiley & Sons 308-333, 1998

      6 Ho, Y. C., "Perturbation Analysis of Discrete Event Dynamic Systems" Kluwer Academic Publishers 1991

      7 Nozari, A., "Control Variates for Multi-population Simulation Experiments" 16 : 159-169, 1984

      8 Kwon, C., "Combined Correlation Methods for Meta-model Estimation in Multi-population Simulation Experiments" 49 : 49-75, 1994

      9 Anderson T.W, "An Introduction to Multivariate Statistical Analysis" John Wiley & Sons 1984

      10 Robins, H, "A Stochastic Approximation Method" 32 : 400-407, 1951

      1 권치명, "퍼터베이션 분석을 이용한 대기행렬 네트워크의 최적화" 9 (9): 89-102, 2000

      2 Wilson, J. R, "Variance Reduction in Queueing Simulation Using Generalized Concomitant Variables" 19 : 129-153, 1984

      3 Wieland J. R., "Stochastic gradient Estimation Using a Single Design Point" 390-397, 2006

      4 Pritsker, A. A. B., "Simulation with Visual SLAM and AWeSim" John Wiley & Sons 1999

      5 Andradottir,S., "Simulation Optimization" John Wiley & Sons 308-333, 1998

      6 Ho, Y. C., "Perturbation Analysis of Discrete Event Dynamic Systems" Kluwer Academic Publishers 1991

      7 Nozari, A., "Control Variates for Multi-population Simulation Experiments" 16 : 159-169, 1984

      8 Kwon, C., "Combined Correlation Methods for Meta-model Estimation in Multi-population Simulation Experiments" 49 : 49-75, 1994

      9 Anderson T.W, "An Introduction to Multivariate Statistical Analysis" John Wiley & Sons 1984

      10 Robins, H, "A Stochastic Approximation Method" 32 : 400-407, 1951

      11 Andradottir,S, "A New Algorithm for Stochastic Optimization" WSC 364-366, 1990

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2006-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2005-06-22 학술지명변경 외국어명 : 미등록 -> JOURNAL OF THE KOREA SOCIETY FOR SIMULATION KCI등재후보
      2004-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      2004-01-01 평가 등재후보 탈락 (등재후보1차)
      2002-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      2000-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.3 0.3 0.32
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.28 0.25 0.541 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼