RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      정전기 방전에 의해 제조된 흑연박리 그래핀 첨가 폴리이미드 막의 열전도 향상 = Thermal Conductivity Enhancement of Polyimide Film Induced from Exfoliated Graphene Prepared by Electrostatic Discharge Method

      한글로보기

      https://www.riss.kr/link?id=A107375027

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 연구에서는 폴리이미드(polyimide; PI) 막(film)의 열전도도를 향상시켜 그 응용성을 확대하고자, 정전기 방전법을 이용하여 흑연봉으로부터 그래핀을 제조하고 제조된 그래핀을 첨가하여 폴...

      본 연구에서는 폴리이미드(polyimide; PI) 막(film)의 열전도도를 향상시켜 그 응용성을 확대하고자, 정전기 방전법을 이용하여 흑연봉으로부터 그래핀을 제조하고 제조된 그래핀을 첨가하여 폴리아믹산(polyamic acid; PAA) 전구체로부터 200 μm두께의 폴리이미드 기반 열전도 막을 제조하였다. 정전기 방전 기법으로 생산된 그래핀은 라만, XPS, TEM등을 이용하여 물성을 평가하였다. 제조된 그래핀은 라만 스펙트럼 분석 결과 I<sub>D</sub>/I<sub>G</sub> 값이 0.138이며, XPS 분석 결과 C/O 비율이 24.91로 구조적, 표면화학적으로 우수한 물성을 나타내었다. 또한, 흑연 박리 그래핀의 첨가량에 따라 폴리이미드 막의 열전도도는 지수함수적으로 증가하였으며, 그래핀 함량을 40% 초과 시에는 폴리이미드 막을 제조할 수 없었다. 그래핀을 폴리아믹산 중량 대비40 wt% 첨가하여 제조된 폴리이미드 막의 열원반(hot disk) 열전도도는 51 W/mK를 나타내었으며, 순수한 폴리이미드 막의 열전도도(1.9 W/mK)보다 크게 향상되었다. 이 결과는 정전기 방전기법으로 제조된 박리 그래핀의 우수한 물성에 기인한 것으로 판단된다.

      더보기

      다국어 초록 (Multilingual Abstract)

      A thermally conductive 200 μm thick polyimide-based film was made from a polyamic acid (PAA) precursor containing graphene prepared from graphite rod using an electrostatic discharge method in order to improve the thermal conductivity and expand the ...

      A thermally conductive 200 μm thick polyimide-based film was made from a polyamic acid (PAA) precursor containing graphene prepared from graphite rod using an electrostatic discharge method in order to improve the thermal conductivity and expand the applicability of polyimide (PI) film. Properties of graphene produced by electrostatic discharge were measured by Raman spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy (XPS). As a result of Raman spectrum and XPS analyses of as-prepared graphene, the I<sub>D</sub>/I<sub>G</sub> ratio was 0.138 and C/O value was 24.91 which are excellent structural and surface chemical properties. Moreover, thermal conductivities of polyimide films increased exponentially according to graphene contents but when the graphene content exceeded 40%, the polyimide film could not maintain its shape. The thermal conductivity of carbonized PI film made from PAA containing 40 wt% of graphene was 51 W/mK which is greatly enhanced from the pristine carbonized PI film (1.9 W/mK). This result could be originated from superior properties of graphene prepared from the electrostatic discharge method.

      더보기

      참고문헌 (Reference)

      1 C. Manoratne, "XRD-HTA, UV visible, FTIR and SEM interpretation of reduced graphene oxide synthesized from high purity vein graphite" 14 : 19-30, 2017

      2 J. Loos, "Visualization of single-wall carbon nanotube (SWNT) networks in conductive polystyrene nanocomposites by charge contrast imaging" 104 : 160-167, 2005

      3 A. A. Balandin, "Thermal properties of graphene and nanostructured carbon materials" 10 : 569-581, 2011

      4 K. M. Shahil, "Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials" 152 : 1331-1340, 2012

      5 S. Pei, "The reduction of graphene oxide" 50 : 3210-3228, 2012

      6 A. C. Neto, "The electronic properties of graphene" 81 : 109-, 2009

      7 S. Stankovich, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide" 45 : 1558-1565, 2007

      8 S. N. Alam, "Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO)" 6 : 1-18, 2017

      9 N. Díaz Silva, "Synthesis of carbon nanofibers with maghemite via a modified sol-gel technique" 2017 : 10-, 2017

      10 F. Zhang, "Stress controllability in thermal and electrical conductivity of 3D elastic graphene‐crosslinked carbon nanotube sponge/polyimide nanocomposite" 29 : 1901383-, 2019

      1 C. Manoratne, "XRD-HTA, UV visible, FTIR and SEM interpretation of reduced graphene oxide synthesized from high purity vein graphite" 14 : 19-30, 2017

      2 J. Loos, "Visualization of single-wall carbon nanotube (SWNT) networks in conductive polystyrene nanocomposites by charge contrast imaging" 104 : 160-167, 2005

      3 A. A. Balandin, "Thermal properties of graphene and nanostructured carbon materials" 10 : 569-581, 2011

      4 K. M. Shahil, "Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials" 152 : 1331-1340, 2012

      5 S. Pei, "The reduction of graphene oxide" 50 : 3210-3228, 2012

      6 A. C. Neto, "The electronic properties of graphene" 81 : 109-, 2009

      7 S. Stankovich, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide" 45 : 1558-1565, 2007

      8 S. N. Alam, "Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO)" 6 : 1-18, 2017

      9 N. Díaz Silva, "Synthesis of carbon nanofibers with maghemite via a modified sol-gel technique" 2017 : 10-, 2017

      10 F. Zhang, "Stress controllability in thermal and electrical conductivity of 3D elastic graphene‐crosslinked carbon nanotube sponge/polyimide nanocomposite" 29 : 1901383-, 2019

      11 Y. Guo, "Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology" 6 : 3004-3015, 2018

      12 S. Chen, "Scalable production of thick graphene film for next generation thermal management application" 167 : 270-277, 2020

      13 F. Tuinstra, "Raman spectrum of graphite" 53 : 1126-1130, 1970

      14 A. C. Ferrari, "Raman spectrum of graphene and graphene layers" 97 : 187401-, 2006

      15 S. Reich, "Raman spectroscopy of graphite" 362 : 2271-2288, 2004

      16 Y. Hao, "Probing layer number and stacking order of few‐layer graphene by Raman spectroscopy" 6 : 195-200, 2010

      17 C. Vacacela Gomez, "Preparation of few-layer graphene dispersions from hydrothermally expanded graphite" 9 : 2539-, 2019

      18 임성묵, "Preparation of electrochemically exfoliated graphene sheets using DC switching voltages" 한국탄소학회 30 (30): 409-416, 2020

      19 C. Chevigny, "Polymer-grafted-nanoparticles nanocomposites:Dispersion, grafted chain conformation, and rheological behavior" 44 : 122-133, 2011

      20 D. Van Thanh, "Plasma-assisted electrochemical exfoliation of graphite for rapid production of graphene sheets" 4 : 6946-6949, 2014

      21 D. Van Thanh, "Plasma electrolysis allows the facile and efficient production of graphite oxide from recycled graphite" 3 : 17402-17410, 2013

      22 A. S. Kotkin, "One-step plasma electrochemical synthesis and oxygen electrocatalysis of nanocomposite of few-layer graphene structures with cobalt oxides" 17 : 100459-, 2020

      23 Q. Jiang, "Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites" 56 : 408-412, 2014

      24 D. G. Papageorgiou, "Mechanical properties of graphene and graphene-based nanocomposites" 90 : 75-127, 2017

      25 I. A. Ovid’Ko, "Mechanical properties of graphene" 34 : 1-11, 2013

      26 Y. J. Kwon, "Mass‐produced electrochemically exfoliated graphene for ultrahigh thermally conductive paper using a multimetal electrode system" 6 : 1900095-, 2019

      27 P. Kumar, "Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness" 94 : 494-500, 2015

      28 Y. C. G. Kwan, "Identification of functional groups and determination of carboxyl formation temperature in graphene oxide using the XPS O 1s spectrum" 590 : 40-48, 2015

      29 C.-Y. Su, "High-quality thin graphene films from fast electrochemical exfoliation" 5 : 2332-2339, 2011

      30 S. Wei, "Fabricating high thermal conductivity rGO/polyimide nanocomposite films via a freeze-drying approach" 8 : 22169-22176, 2018

      31 H. Li, "Enhanced thermal conductivity of graphene/polyimide hybrid film via a novel “molecular welding” strategy" 126 : 319-327, 2018

      32 I. H. Tseng, "Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposite film by addition of functionalized graphene oxide" 62 : 827-835, 2013

      33 N. Díez, "Enhanced reduction of graphene oxide by high-pressure hydrothermal treatment" 5 : 81831-81837, 2015

      34 V. Sreeja, "Effect of reduction time on third order optical nonlinearity of reduced graphene oxide" 66 : 460-468, 2017

      35 Y. Guo, "Constructing fully carbon-based fillers with a hierarchical structure to fabricate highly thermally conductive polyimide nanocomposites" 7 : 7035-7044, 2019

      36 V. Koissin, "Carbon nanofibers grown on large woven cloths: Morphology and properties of growth" 2 : 19-, 2016

      37 J. Chen, "An improved Hummers method for eco-friendly synthesis of graphene oxide" 64 : 225-229, 2013

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-12-01 평가 SCOPUS 등재 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-02-19 학술지명변경 외국어명 : Journal of the Korean Industrial and Engineering Chemistry -> Applied Chemistry for Engineering KCI등재
      2009-04-28 학술지명변경 외국어명 : Jpurnal of the Korean Industrial and Engineering Chemistry -> Journal of the Korean Industrial and Engineering Chemistry KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.32 0.32 0.34
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.33 0.33 0.45 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼