RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      Late-stage hydrothermal alteration and heteromorphism of calc–alkaline lamprophyre dykes in Late Jurassic Granite, Southeast China

      한글로보기

      https://www.riss.kr/link?id=A107595955

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>Three generations of calc–alkaline lamprophyre, occurring as patches or segregations in granite and as dyke swarms with a NNW–SSE trend, are associated with the Late Jurassic Shanqi–Xiaqi granite, SE China. They comprise coarse-grained, hornblende-dominated spessartite and two types of panidiomorphic kersantite: type-1 contains clinopyroxene and biotite phenocrysts, whereas type-2 is fine-grained and plagioclase-rich. The granite is characterised by large feldspar crystals and Al-rich annite. This rare occurrence of outcrops with no influence from atmospheric weathering allows the investigation of extensive alteration from hydrothermal interaction between lamprophyres and granite. At a depth of ca. 18 km, the breakdown of annite in the granite to magnetite+K-feldspar was the result of reheating above 670 °C at oxygen activities >10<SUP>−17</SUP> bar. In the lamprophyres, a variety of reactions due to autometasomatism include: breakdown of Ti-rich pargasites to chlorite, epidote, titanite; olivine to talc, tremolite, saponite, beidellite and Fe–Cr spinels; biotite to chlorite and titanite; calcic plagioclase to orthoclase, albite, epidote, chlorite and beidellite. Late-stage magmatic hydrothermal fluids from granite and lamprophyres resulted in redistribution of F, Ba, Sr, and CO<SUB>2</SUB> with the formation of calcite–fluorite veins. Amphibole-rich spessartite and biotite–diopside dominated kersantite exhibit heteromorphism in that they have similar geochemical characteristics but different mineralogies. The alkali-rich lamprophyric magmas are inferred to have been derived from melting in the mantle wedge during the subduction of the Kula Plate, and show typical backarc rift chemistry. Prior to intrusion of lamprophyre, underplating of large volumes of basaltic magma is thought to have enhanced partial melting in the overlying continental crust resulting in widespread granite magmatism in SE China.</P>
      번역하기

      <P><B>Abstract</B></P> <P>Three generations of calc–alkaline lamprophyre, occurring as patches or segregations in granite and as dyke swarms with a NNW–SSE trend, are associated with the Late Jurassic Shanqi&...

      <P><B>Abstract</B></P> <P>Three generations of calc–alkaline lamprophyre, occurring as patches or segregations in granite and as dyke swarms with a NNW–SSE trend, are associated with the Late Jurassic Shanqi–Xiaqi granite, SE China. They comprise coarse-grained, hornblende-dominated spessartite and two types of panidiomorphic kersantite: type-1 contains clinopyroxene and biotite phenocrysts, whereas type-2 is fine-grained and plagioclase-rich. The granite is characterised by large feldspar crystals and Al-rich annite. This rare occurrence of outcrops with no influence from atmospheric weathering allows the investigation of extensive alteration from hydrothermal interaction between lamprophyres and granite. At a depth of ca. 18 km, the breakdown of annite in the granite to magnetite+K-feldspar was the result of reheating above 670 °C at oxygen activities >10<SUP>−17</SUP> bar. In the lamprophyres, a variety of reactions due to autometasomatism include: breakdown of Ti-rich pargasites to chlorite, epidote, titanite; olivine to talc, tremolite, saponite, beidellite and Fe–Cr spinels; biotite to chlorite and titanite; calcic plagioclase to orthoclase, albite, epidote, chlorite and beidellite. Late-stage magmatic hydrothermal fluids from granite and lamprophyres resulted in redistribution of F, Ba, Sr, and CO<SUB>2</SUB> with the formation of calcite–fluorite veins. Amphibole-rich spessartite and biotite–diopside dominated kersantite exhibit heteromorphism in that they have similar geochemical characteristics but different mineralogies. The alkali-rich lamprophyric magmas are inferred to have been derived from melting in the mantle wedge during the subduction of the Kula Plate, and show typical backarc rift chemistry. Prior to intrusion of lamprophyre, underplating of large volumes of basaltic magma is thought to have enhanced partial melting in the overlying continental crust resulting in widespread granite magmatism in SE China.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼