RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      모바일 조작 작업을 위한 역접근성 기반의 효율적인 베이스 재배치 방법

      한글로보기

      https://www.riss.kr/link?id=A107916490

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper proposes a new method to generate inverse reachability maps that are more efficient for mobile manipulators than the previous algorithms. The base positioning is important to perform the given tasks. Using the inverse reachability method, we can know where to place the robots base for given tasks. For example, the robot successfully performed the task with relocation, even when the target is initially in a low manipulability area or outside the workspace. However, there are some inefficiencies in the online process of the classical inverse reachability method. We describe what inefficiencies appear in the online phase and how to change the offline process to make the online efficient. Moreover, we demonstrate that the proposed approach achieves better performance than usual inverse reachability approaches for mobile manipulation. Finally, we discuss the limitations and advantages of the proposed method.
      번역하기

      This paper proposes a new method to generate inverse reachability maps that are more efficient for mobile manipulators than the previous algorithms. The base positioning is important to perform the given tasks. Using the inverse reachability method, w...

      This paper proposes a new method to generate inverse reachability maps that are more efficient for mobile manipulators than the previous algorithms. The base positioning is important to perform the given tasks. Using the inverse reachability method, we can know where to place the robots base for given tasks. For example, the robot successfully performed the task with relocation, even when the target is initially in a low manipulability area or outside the workspace. However, there are some inefficiencies in the online process of the classical inverse reachability method. We describe what inefficiencies appear in the online phase and how to change the offline process to make the online efficient. Moreover, we demonstrate that the proposed approach achieves better performance than usual inverse reachability approaches for mobile manipulation. Finally, we discuss the limitations and advantages of the proposed method.

      더보기

      참고문헌 (Reference)

      1 Maria Vittoria Minniti, "Whole-Body MPC for a Dynamically Stable Mobile Manipulator" Institute of Electrical and Electronics Engineers (IEEE) 4 (4): 3687-3694, 2019

      2 F. Burget, "Stance selection for humanoid grasping tasks by inverse reachability maps" 5669-5674, 2015

      3 F. Burget, "Stance selection for humanoid grasping tasks by inverse reachability maps" 5669-5674, 2015

      4 N. Vahrenkamp, "Robot Placement based on Reachability Inversion" 1970-1975, 2013

      5 A. Makhal, "Reuleaux : Robot Base Placement by Reachability Analysis" 137-142, 2018

      6 M. Forstenhausler, "Optimized Mobile Robot Positioning for better Utilization of the Workspace of an attached Manipulator" 2074-2079, 2020

      7 N. Vahrenkamp, "Manipulability Analysis" 568-573, 2012

      8 Daniel Honerkamp, "Learning Kinematic Feasibility for Mobile Manipulation Through Deep Reinforcement Learning" Institute of Electrical and Electronics Engineers (IEEE) 6 (6): 6289-6296, 2021

      9 D. -M. Choi, "Knowledge Based Manipulation for Service Robots" Korean Society for Precision Engineering 716-717, 2017

      10 Caelan Reed Garrett, "FFRob: Leveraging symbolic planning for efficient task and motion planning" SAGE Publications 37 (37): 104-136, 2018

      1 Maria Vittoria Minniti, "Whole-Body MPC for a Dynamically Stable Mobile Manipulator" Institute of Electrical and Electronics Engineers (IEEE) 4 (4): 3687-3694, 2019

      2 F. Burget, "Stance selection for humanoid grasping tasks by inverse reachability maps" 5669-5674, 2015

      3 F. Burget, "Stance selection for humanoid grasping tasks by inverse reachability maps" 5669-5674, 2015

      4 N. Vahrenkamp, "Robot Placement based on Reachability Inversion" 1970-1975, 2013

      5 A. Makhal, "Reuleaux : Robot Base Placement by Reachability Analysis" 137-142, 2018

      6 M. Forstenhausler, "Optimized Mobile Robot Positioning for better Utilization of the Workspace of an attached Manipulator" 2074-2079, 2020

      7 N. Vahrenkamp, "Manipulability Analysis" 568-573, 2012

      8 Daniel Honerkamp, "Learning Kinematic Feasibility for Mobile Manipulation Through Deep Reinforcement Learning" Institute of Electrical and Electronics Engineers (IEEE) 6 (6): 6289-6296, 2021

      9 D. -M. Choi, "Knowledge Based Manipulation for Service Robots" Korean Society for Precision Engineering 716-717, 2017

      10 Caelan Reed Garrett, "FFRob: Leveraging symbolic planning for efficient task and motion planning" SAGE Publications 37 (37): 104-136, 2018

      11 M. Mittal, "Articulated Object Interaction in Unknown Scenes with Whole-Body Mobile Manipulation"

      12 F. Paus, "A combined approach for robot placement and coverage path planning for mobile manipulation" 6285-6292, 2017

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2013-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      2012-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2011-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2009-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      2008-09-30 학회명변경 한글명 : 한국로봇공학회 -> 한국로봇학회
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.59 0.59 0.45
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.38 0.31 0.716 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼