<P>Auto tuning niching genetic algorithm was used to design optimal HTS magnets for the 600 kJ class SMES system under several design constraint conditions. Constraint conditions were operation loss of magnet (less than 2 W), inductance of magne...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107622678
2007
-
SCOPUS,SCIE
학술저널
1994-1997(4쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>Auto tuning niching genetic algorithm was used to design optimal HTS magnets for the 600 kJ class SMES system under several design constraint conditions. Constraint conditions were operation loss of magnet (less than 2 W), inductance of magne...
<P>Auto tuning niching genetic algorithm was used to design optimal HTS magnets for the 600 kJ class SMES system under several design constraint conditions. Constraint conditions were operation loss of magnet (less than 2 W), inductance of magnet (less than 24 H), the number of double pancake coils (about 10 DPCs), the number of turns of DPC (less than 300 turns), outer diameter of DPC (close to 800 mm) and total length of HTS wire in a DPC (less than 500 m). As a result of optimum design, we obtained design parameters for the 600 kJ SMES magnet according to two operating currents, 360 A and 370 A. However, even though the HTS magnet was designed optimally in respect to the electromagnetics, consideration of mechanical integrity due to the stress by Lorentz force must not be neglected for the stable operation of the SMES system. Therefore, we developed a program, through the finite element method (FEM), for stress analysis due to Lorentz force in operation of the SMES system. In this paper, the stresses (radial and hoop stress) imposed on the designed HTS magnets were calculated by the program, and the results of stress analysis were discussed.</P>
Thermal and Electrical Analysis of Coated Conductor Under AC Over-Current
Study of Cryogenic Conduction Cooling Systems for an HTS SMES