RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Evolution of AgX Nanowires into Ag Derivative Nano/microtubes for Highly Efficient Visible-Light Photocatalysts

      한글로보기

      https://www.riss.kr/link?id=A107672227

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>Our study proposes a novel strategy for the synthesis of Ag derivatives (AgX@Ag (X = Cl and Br) or Ag nano/microtubes) using the controlled chemical reduction or electron-beam irradiation of AgX nanowires (NWs), which are formed from the cont...

      <P>Our study proposes a novel strategy for the synthesis of Ag derivatives (AgX@Ag (X = Cl and Br) or Ag nano/microtubes) using the controlled chemical reduction or electron-beam irradiation of AgX nanowires (NWs), which are formed from the controlled dewetting of a AgX thin film on colloidal particles. The size of the AgX@Ag and Ag nano/microtubes can be controlled using the AgCl NWs as templates and varying the concentration of NaX. By controlling the concentration of NaBr, heterojunction-structured AgCl/AgBr NWs (H-AgCl/AgBr NWs) can be produced from the AgCl NWs due to a partial ion-exchange reaction (low concentration), and the AgBr NWs produced after a complete ion-exchange reaction between Cl- and Br- are further grown into micrometer-sized AgBr wires (high concentration). The resulting AgX NWs can be transformed into corresponding AgX@Ag or Ag nano/microtubes via a controlled chemical or physical method. The AgX derivatives (AgX@Ag nanotubes (NTs) and AgX NWs) are tested as visible-light-induced photocatalysts for decomposition of methyl orange. The AgX@Ag NTs exhibit the best photocatalytic activities due to the advantages of the core@shell structure, allowing multiple reflections of visible light within the interior cavity, providing a well-defined and clean Ag/AgX interface, and preventing direct adsorption of pollutants on AgX because of the shell structure. These advantages allow AgX@Ag NTs to maintain high catalytic performance even after multiple uses. The approach can also be used as a direct method for preparing Ag nano/microtubes with a tailored size and as a new method for incorporating a AgX NW core into a Ag nano/microtube shell. Our approach is useful for synthesizing various types of one-dimensional heterostructured NWs or metal NTs with controlled structures and properties.</P><P><B>Graphic Abstract</B>
      <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/aamick/2013/aamick.2013.5.issue-21/am4034735/production/images/medium/am-2013-034735_0007.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/am4034735'>ACS Electronic Supporting Info</A></P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명