RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE

      Design and Fabrication of a 3D Printed Miniature Pump for Integrated Microfluidic Applications

      한글로보기

      https://www.riss.kr/link?id=A105376506

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper presents design, implementation, and evaluation of a 3D printed miniature peristaltic pump based on a planetary gear structure. The miniature pump (minipump) is printed using a rigid opaque photopolymers (Vero) and the fabrication time for ...

      This paper presents design, implementation, and evaluation of a 3D printed miniature peristaltic pump based on a planetary gear structure. The miniature pump (minipump) is printed using a rigid opaque photopolymers (Vero) and the fabrication time for a single pump was in the order of few minutes. The function of the minipump is comparable to that of a benchtop peristaltic pump. It however uses gears instead of rollers to invoke peristalsis. The characterization of the minipump is performed by using deionized water and a honey solution with viscosity of about 170 cP as working fluids. The minipump has a linear flow rate range spanning from 40 mL·min-1 to 230 mL·min-1 and continues working fine even at the backpressure as high as 25 kPa. A temperature gradient microfluidic chip is fabricated as an additional testing platform for the minipump. Our experimental results demonstrate a successful interfacing between the chip and the minipump where the conceptual polymerase chain reaction (PCR) chip is established excellently without leaking or flow disruption within the microchannels. Moreover, the minipump shows good tolerance to bubbles, has a high reproducible output flow, and can operate continuously over a period of 35 hours.

      더보기

      참고문헌 (Reference)

      1 Fuchiwaki, Y., "Study of a Liquid Plug-Flow Thermal Cycling Technique Using a Temperature Gradient-Based Actuator" 14 (14): 20235-20244, 2014

      2 Ognjanović, M., "Reliability for Design of Planetary Gear Drive Units" 49 (49): 829-841, 2014

      3 Hashimoto, M., "Rapid Pcr in a Continuous Flow Device" 4 (4): 638-645, 2004

      4 Becker, H., "Polymer Microfabrication Methods for Microfluidic Analytical Applications" 21 (21): 12-26, 2000

      5 Koch, C., "PDMS and Tubing-Based Peristaltic Micropumps with Direct Actuation" 135 (135): 664-670, 2009

      6 Tachibana, H., "On-Chip Quantitative Detection of Pathogen Genes by Autonomous Microfluidic PCR Platform" 74 : 725-730, 2015

      7 Skafte-Pedersen, P., "Multi-Channel Peristaltic Pump for Microfluidic Applications Featuring Monolithic PDMS Inlay" 9 (9): 3003-3006, 2009

      8 Chee, P. S., "Modular Architecture of a Non-Contact Pinch Actuation Micropump" 12 (12): 12572-12587, 2012

      9 Woias, P., "Micropumps-Past, Progress and Future Prospects" 105 (105): 28-38, 2005

      10 Jiang, X., "Microfluidic Chip Integrating High Throughput Continuous-Flow PCR and DNA Hybridization For Bacteria Analysis" 122 : 246-250, 2014

      1 Fuchiwaki, Y., "Study of a Liquid Plug-Flow Thermal Cycling Technique Using a Temperature Gradient-Based Actuator" 14 (14): 20235-20244, 2014

      2 Ognjanović, M., "Reliability for Design of Planetary Gear Drive Units" 49 (49): 829-841, 2014

      3 Hashimoto, M., "Rapid Pcr in a Continuous Flow Device" 4 (4): 638-645, 2004

      4 Becker, H., "Polymer Microfabrication Methods for Microfluidic Analytical Applications" 21 (21): 12-26, 2000

      5 Koch, C., "PDMS and Tubing-Based Peristaltic Micropumps with Direct Actuation" 135 (135): 664-670, 2009

      6 Tachibana, H., "On-Chip Quantitative Detection of Pathogen Genes by Autonomous Microfluidic PCR Platform" 74 : 725-730, 2015

      7 Skafte-Pedersen, P., "Multi-Channel Peristaltic Pump for Microfluidic Applications Featuring Monolithic PDMS Inlay" 9 (9): 3003-3006, 2009

      8 Chee, P. S., "Modular Architecture of a Non-Contact Pinch Actuation Micropump" 12 (12): 12572-12587, 2012

      9 Woias, P., "Micropumps-Past, Progress and Future Prospects" 105 (105): 28-38, 2005

      10 Jiang, X., "Microfluidic Chip Integrating High Throughput Continuous-Flow PCR and DNA Hybridization For Bacteria Analysis" 122 : 246-250, 2014

      11 Lee, K. S., "Microfluidic Chemostat and Turbidostat with Flow Rate, Oxygen, and Temperature Control for Dynamic Continuous Culture" 11 (11): 1730-1739, 2011

      12 Shen, M., "Magnetic Active-Valve Micropump Actuated by a Rotating Magnetic Assembly" 154 (154): 52-58, 2011

      13 B. Leticia Fernández-Carballo, "Low-cost, real-time, continuous flow PCR system for pathogen detection" Springer Nature 18 (18): 2016

      14 Cantwell, M. L., "Low-Cost High Performance Disposable Micropump for Fluidic Delivery Applications" 168 (168): 187-194, 2011

      15 Erickson, D., "Joule Heating and Heat Transfer in Poly(Dimethylsiloxane)Microfluidic Systems" 3 (3): 141-149, 2003

      16 Jeong, O. C., "Fabrication of a Peristaltic PDMS Micropump" 123-124 : 453-458, 2005

      17 Shoji, E., "Fabrication of a Diaphragm Micropump System Utilizing the Ionomer-Based Polymer Actuator" 237 : 660-665, 2016

      18 Liao, H. -H., "Fabrication and Characterization of Thermo-Pneumatic Peristaltic Micropumps" 3 : 296-299, 2008

      19 Romoli, L., "Experimental Approach to the Laser Machining of PMMA Substrates for the Fabrication of Microfluidic Devices" 49 (49): 419-427, 2011

      20 Schäpper, D., "Development of a Single-Use Microbioreactor for Cultivation of Microorganisms" 160 (160): 891-898, 2010

      21 My Pham, "Development of a Peristaltic Micropump with Lightweight Piezo-Composite Actuator Membrane Valves" 한국항공우주학회 12 (12): 69-77, 2011

      22 Szita, N., "Development of a Multiplexed Microbioreactor System for High-Throughput Bioprocessing" 5 (5): 819-826, 2005

      23 Wu, M. -H., "Development of Perfusion-Based Microbioreactor Platform Capable of Providing Tunable Dynamic Compressive Loading to 3-D Cell Culture Construct : Demonstration Study of the Effect of Compressive Stimulations on Articular Chondrocyte Functions" 176 : 86-96, 2013

      24 Shallan, A. I., "Cost-Effective Three-Dimensional Printing of Visibly Transparent Microchips within Minutes" 86 (86): 3124-3130, 2014

      25 Paydar, O. H., "Characterization of 3D-Printed Microfluidic Chip Interconnects with Integrated O-Rings" 205 : 199-203, 2014

      26 Gómez-de Pedro, S., "Automatic Microfluidic System to Perform Multi-Step Magneto-Biochemical Assays" 245 : 477-483, 2017

      27 Ni, J., "An Integrated Planar Magnetic Micropump" 117 : 35-40, 2014

      28 Zhou, Y., "An Electromagnetically-Actuated All-Pdms Valveless Micropump for Drug Delivery" 2 (2): 345-355, 2011

      29 Zhang, X., "A Valve-Less Microfluidic Peristaltic Pumping Method" 9 (9): 014118-, 2015

      30 Du, M., "A Peristaltic Micro Pump Driven by a Rotating Motor with Magnetically Attracted Steel Balls" 9 (9): 2611-2620, 2009

      31 Cazorla, P. -H., "A Low Voltage Silicon Micro-Pump Based on Piezoelectric Thin Films" 250 : 35-39, 2016

      32 Wu, M. -H., "A High Throughput Perfusion-Based Microbioreactor Platform Integrated with Pneumatic Micropumps for Three-Dimensional Cell Culture" 10 (10): 309-319, 2008

      33 Nguyen, N. -T., "A Fully Polymeric Micropump with Piezoelectric Actuator" 97 (97): 137-143, 2004

      34 Alam, M. N. H. Z., "A Continuous Membrane Microbioreactor System for Development of Integrated Pectin Modification and Separation Processes" 167 (167): 418-426, 2011

      35 Hwang, Y., "3D Printed Molds for Non-Planar PDMS Microfluidic Channels" 226 : 137-142, 2015

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-06-23 학회명변경 영문명 : Korean Society Of Precision Engineering -> Korean Society for Precision Engineering KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-05-30 학술지명변경 한글명 : 한국정밀공학회 영문논문집 -> International Journal of the Korean of Precision Engineering KCI등재후보
      2005-05-30 학술지명변경 한글명 : International Journal of the Korean of Precision Engineering -> International Journal of Precision Engineering and Manufacturing
      외국어명 : International Journal of the Korean of Precision Engineering -> International Journal of Precision Engineering and Manufacturing
      KCI등재후보
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.38 0.71 1.08
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.92 0.85 0.583 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼