RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      허프 변환과 최소제곱법을 이용한 세라믹 영상에서의 결함 검출

      한글로보기

      https://www.riss.kr/link?id=A101698931

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      In this paper, we suggest a method of detecting defects by applying Hough transform and least squares on ceramic images obtained from non-destructive testing. In the ceramic images obtained from non-destructive testing, the background area, where the defect does not exist, commonly show gradual change of luminosity in vertical direction. In order to extract the background area which is going to be used in the detection of defects, Hough transform is performed to rotate the ceramic image in a way that the direction of overall luminosity change lies in the vertical direction as much as possible. Least squares are then applied on the rotated image to approximate the contrast value of the background area. The extracted background area is used for extracting defects from the ceramic images. In this paper we applied this method on ceramic images acquired from non-destructive testing. It was confirmed that extracted background area could be effectively applied for searching the section where the defect exists and detecting the defect.
      번역하기

      In this paper, we suggest a method of detecting defects by applying Hough transform and least squares on ceramic images obtained from non-destructive testing. In the ceramic images obtained from non-destructive testing, the background area, where the ...

      In this paper, we suggest a method of detecting defects by applying Hough transform and least squares on ceramic images obtained from non-destructive testing. In the ceramic images obtained from non-destructive testing, the background area, where the defect does not exist, commonly show gradual change of luminosity in vertical direction. In order to extract the background area which is going to be used in the detection of defects, Hough transform is performed to rotate the ceramic image in a way that the direction of overall luminosity change lies in the vertical direction as much as possible. Least squares are then applied on the rotated image to approximate the contrast value of the background area. The extracted background area is used for extracting defects from the ceramic images. In this paper we applied this method on ceramic images acquired from non-destructive testing. It was confirmed that extracted background area could be effectively applied for searching the section where the defect exists and detecting the defect.

      더보기

      참고문헌 (Reference)

      1 jhkim, "Various Fault Detection of Ceramic Image using ART2" 21 (21): 271-273, 2013

      2 J. Steven, "The method of least squares" Brown University 2006

      3 A. Charnes, "The Equivalence of Generalized Least Squares and Maximum Likelihood Estimates in the Exponential Family" 71 (71): 169-171, 1976

      4 "Korea Society for Nondestructive Testing"

      5 skhwang, "IT CookBook, Image process programming by Visual C++" Hanbit Media 453-456, 2007

      6 oh, I.S., "IT CookBook, Computer Vision" Hanbit Academy 145-149, 2014

      7 Canny, "A Computational Approach to Edge Detection" 8 (8): 679-698, 1986

      1 jhkim, "Various Fault Detection of Ceramic Image using ART2" 21 (21): 271-273, 2013

      2 J. Steven, "The method of least squares" Brown University 2006

      3 A. Charnes, "The Equivalence of Generalized Least Squares and Maximum Likelihood Estimates in the Exponential Family" 71 (71): 169-171, 1976

      4 "Korea Society for Nondestructive Testing"

      5 skhwang, "IT CookBook, Image process programming by Visual C++" Hanbit Media 453-456, 2007

      6 oh, I.S., "IT CookBook, Computer Vision" Hanbit Academy 145-149, 2014

      7 Canny, "A Computational Approach to Edge Detection" 8 (8): 679-698, 1986

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2006-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2004-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.44 0.44 0.44
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.43 0.38 0.58 0.15
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼