1 T. Takeyama, "δ-Bi2O3 thin films deposited on dense YSZ substrates by CVD method under atmospheric pressure for intermediate temperature SOFC applications" 200 (200): 4797-4801, 2006
2 M. Han, "microstructure and properties of a YSZ electrolyte for SOFCs" 165 (165): 757-763, 2007
3 S. Hong, "Yttria-stabilized zirconia thin films with restrained columnar grains for oxygen ion conducting electrolytes" 42 (42): 16703-16709, 2016
4 M. Tanhaei, "Yttria-stabilized zirconia thin film electrolyte deposited by EB-PVD on porous anode support for SOFC applications" 43 (43): 3035-3042, 2017
5 G. Laukaitis, "YSZ thin films deposited by e-beam technique" 515 (515): 678-682, 2006
6 A. F. D. O. Falcão, "Wave energy utilization : A review of the technologies" 14 (14): 899-918, 2010
7 V. V. Kharton, "Transport properties of solid oxide electrolyte ceramics: a brief review" 174 (174): 135-149, 2004
8 D. Beckel, "Thin films for micro solid oxide fuel cells" 173 (173): 325-345, 2007
9 M. V. F. Schlupp, "Thin film growth of yttria stabilized zirconia by aerosol assisted chemical vapor deposition" 202 : 47-55, 2012
10 D. Virbukas, "The structural and electrical properties of samarium doped ceria films formed by e-beam deposition technique" 302 : 107-112, 2017
11 R. Q. Liu, "Synthesis of ammonia at atmospheric pressure with Ce0. 8 M 0. 2O2-δ (M = La, Y, Gd, Sm) and their proton conduction at intermediate temperature" 177 (177): 73-76, 2006
12 K. Sasaki, "Synthesis and characterization of LSGM thin film electrolyte by RF magnetron sputtering for LT-SOFCS" 179 (179): 1268-1272, 2008
13 K. Singh, "Synthesis and characterisation of ceramic proton conducting perovskite-type multielement-doped Ba0. 5Sr0. 5Ce1 − x − y − zZrxGdyYzO3 − δ(0 < x < 0.5; y = 0, 0.1, 0.15; z = 0.1, 0.2)" 41 (41): 13227-13237, 2016
14 Z. Cai, "Supported Zr(Sc)O2SOFCs for reduced temperature prepared by slurry coating and co-firing" 152 : 583-590, 2002
15 M. Gong, "Sulfur-tolerant anode materials for solid oxide fuel cell application" 168 (168): 289-298, 2007
16 D. Papurello, "Sulfur poisoning in Ni-anode solid oxide fuel cells(SOFCs) : deactivation in single cells and a stack" 283 : 1224-1233, 2016
17 D. Virbukas, "Structural and electrical study of samarium doped cerium oxide thin films prepared by e-beam evaporation" 509 (509): 4525-4529, 2011
18 K. Hayashi, "Sputtered La0.5Sr0.5MnO3–yttria stabilized zirconia composite film electrodes for SOFC" 98 (98): 49-55, 1997
19 L. S. Wang, "Sputter-deposited medium-temperature solid oxide fuel cells with multi-layer electrolytes" 61 (61): 273-276, 1993
20 A. B. Stambouli, "Solid oxide fuel cells(SOFCs) : a review of an environmentally clean and efficient source of energy" 6 (6): 433-455, 2002
21 N. Kannan, "Solar energy for future world : a review" 62 : 1092-1105, 2016
22 Young, "ScienceDirect Highperformance thin film solid oxide fuel cells with scandia-stabilized zirconia(ScSZ)thin film electrolyte" 40 (40): 15704-15708, 2015
23 H. Seong, "ScienceDirect Degradation behavior of Ni–YSZ anode-supported solid oxide fuel cell(SOFC)as a function of H2S concentration" 43 (43): 22511-22518, 2018
24 D. A. Medvedev, "Science Advanced materials for SOFC application : Strategies for the development of highly conductive and stable solid oxide proton electrolytes" 75 : 38-79, 2016
25 H. -S. Noh, "Scale-up of thin-film deposition-based solid oxide fuel cell by sputtering, a commercially viable thin-film technology" 163 (163): F613-F617, 2016
26 A. Evans, "Review on microfabricated micro-solid oxide fuel cell membranes" 194 (194): 119-129, 2009
27 C. Xia, "Reduced-temperature solid oxide fuel cells fabricated by screen printing" 4 (4): A52-A54, 2001
28 B. K. Hong, "Recent advances in fuel cell electric vehicle technologies of hyundai" 86 (86): 3-11, 2018
29 Y. Zhang, "Recent Progress on Advanced Materials for Solid-Oxide Fuel Cells Operating Below 500 °C" 29 (29): 1700132-, 2017
30 D. Mohan, "Pyrolysis of wood/biomass for bio-oil : a critical review" 20 (20): 848-889, 2006
31 L. Bi, "Proton-conducting solid oxide fuel cell(SOFC)with Y-doped BaZrO3electrolyte" 80 : 20-23, 2017
32 C. Chen, "Proton conduction in BaCe1− xGdxO3− αat intermediate temperature and its application to synthesis of ammonia at atmospheric pressure" 485 (485): 69-72, 2009
33 F. J. Dias, "Properties of Ni/YSZ porous cermets for SOFC anode substrates prepared by tape casting and coat-mix 1 process" 92 : 107-111, 1999
34 H. Koide, "Properties of Ni/YSZ cermet as anode for SOFC" 132 (132): 253-260, 2000
35 B. Shri-Prakash, "Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell : A review" 36 : 149-179, 2014
36 Y. Zhu, "Promotion of oxygen reduction by exsolved silver nanoparticles on a perovskite scaffold for low-temperature solid oxide fuel cells" 16 (16): 512-518, 2016
37 M. Mogensen, "Progress in understanding SOFC electrodes" 150 (150): 123-129, 2002
38 N. Mahato, "Progress in materials science progress in material selection for solid oxide fuel cell technology : a review" 72 : 141-337, 2015
39 Y. Zhang, "Production of dense yttriastabilized zirconia thin film by dip-coating for IT-SOFC application" 34 (34): 637-641, 2004
40 P. Ried, "Processing of YSZ screen printing pastes and the characterization of the electrolyte layers for anode supported SOFC" 28 (28): 1801-1808, 2008
41 A. Mineshige, "Preparation of dense electrolyte layer using dissociated oxygen electrochemical vapor deposition technique" 175 (175): 483-485, 2004
42 A. Arabac, "Preparation and characterization of 10 mol % Gd doped CeO2(GDC)electrolyte for SOFC applications" 38 (38): 6509-6515, 2012
43 안혁순, "Pr2NiO4+δ for Cathode in Protonic Ceramic Fuel Cells" 한국세라믹학회 55 (55): 358-363, 2018
44 E. Dogdibegovic, "Performance of metal-supported SOFCs with infiltrated electrodes" 171 (171): 477-482, 2019
45 T. Yu, "Performance of cobalt-free perovskite La0.6Sr 0.4Fe1−xNbxO3−δ cathode materials for proton-conducting IT-SOFC" 608 : 30-34, 2014
46 J. S. Ahn, "Performance of IT‐SOFC with Ce0.9Gd0.1O1.95Functional Layer at the Interface of Ce0.9Gd0.1O1.95Electrolyte and Ni–Ce0.9Gd0.1O1.95 Anode" 9 (9): 639-643, 2009
47 S. Farhad, "Performance evaluation of different configurations of biogas-fuelled SOFC micro-CHP systems for residential applications" 35 (35): 3758-3768, 2010
48 V. A. C. Haanappel, "Optimisation of processing and microstructural parameters of LSM cathodes to improve the electrochemical performance of anode-supported SOFCs" 141 (141): 216-226, 2005
49 V. Dusastre, "Optimisation of composite cathodes for intermediate temperature SOFC applications" 126 (126): 163-174, 1999
50 S. Chu, "Opportunities and challenges for a sustainable energy future" 488 (488): 294-, 2012
51 F. S. da Silva, "Novel materials for solid oxide fuel cell technologies : a literature review" 42 (42): 26020-26036, 2017
52 E. Rezugina, "Ni–YSZ films deposited by reactive magnetron sputtering for SOFC applications" 204 (204): 2376-2380, 2010
53 S. Zha, "Ni–Ce0. 9Gd0. 1O1. 95 anode for GDC electrolyte-based low-temperature SOFCs" 166 (166): 241-250, 2004
54 T. Zhu, "Ni-substituted Sr(Ti, Fe)O3 SOFC anodes: achieving high performance via metal alloy nanoparticle exsolution" 2 (2): 478-496, 2018
55 Y. Sun, "New opportunity for in situ exsolution of metallic nanoparticles on perovskite parent" 16 (16): 5303-5309, 2016
56 Y. Liu, "Nanostructured and functionally graded cathodes for intermediate temperature solid oxide fuel cells" 138 (138): 194-198, 2004
57 J. W. Kim, "Nanogranulization of gadolinia-doped ceria electrolyte surface by aerosol-assisted chemical vapor deposition for low-temperature solid oxide fuel cells" 301 : 72-77, 2016
58 T. Z. Sholklapper, "Nanocomposite Ag-LSM solid oxide fuel cell electrodes" 175 (175): 206-210, 2008
59 K. J. Yoon, "Nano-tailoring of infiltrated catalysts for high-temperature solid oxide regenerative fuel cells" 36 : 9-20, 2017
60 D. Neagu, "Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution" 6 : 8120-, 2015
61 G. Y. Cho, "Multi-component nano-composite electrode for SOFCS via thin film technique" 65 : 130-136, 2014
62 X. Chi, "Modified pechini synthesis of proton-conducting Ba (Ce, Ti) O3 and comparative studies of the effects of acceptors on its structure, stability, sinterability, and conductivity" 97 (97): 1103-1109, 2014
63 G. M. Christie, "Microstructure—ionic conductivity relationships in ceria-gadolinia electrolytes" 83 (83): 17-27, 1996
64 W. B. Wang, "Microstructures and proton conduction behaviors of Dy-doped BaCeO3ceramics at intermediate temperature" 181 (181): 667-671, 2010
65 E. Koep, "Microstructure and electrochemical properties of cathode materials for SOFCs prepared via pulsed laser deposition" 161 (161): 250-255, 2006
66 Y. L. Liu, "Microstructural studies on degradation of interface between LSM and YSZ cathode and YSZ electrolyte in SOFCs" 180 (180): 1298-1304, 2009
67 A. Bertei, "Microstructural modeling for prediction of transport properties and electrochemical performance in SOFC composite electrodes" 101 : 175-190, 2013
68 M. V. F. Schlupp, "Microsolid oxide fuel cell membranes prepared by aerosol-assisted chemical vapor deposition" 4 (4): 1301383-, 2014
69 T. Ryll, "Microscopic and nanoscopic three-phase-boundaries of platinum thin-film electrodes on YSZ electrolyte" 21 (21): 565-572, 2011
70 A. A. Solovyev, "Magnetron sputtering of gadolinium-doped ceria electrolyte for intermediate temperature solid oxide fuel cells" 14 : 575-584, 2019
71 E. D. Wachsman, "Lowering the temperature of solid oxide fuel cells" 334 (334): 935-939, 2011
72 H. S. Noh, "Low temperature performance improvement of SOFC with thin film electrolyte and electrodes fabricated by pulsed laser deposition" 156 (156): B1484-B1490, 2009
73 M. M. Vieira, "Lanthanum silicate thin films for SOFC electrolytes synthesized by magnetron sputtering and subsequent annealing" 206 (206): 3316-3322, 2012
74 F. Zhao, "K2NiF4 type La2-xSrxCo0. 8Ni0. 2O4+δ as the cathodes for solid oxide fuel cells" 179 (179): 1450-1453, 2008
75 W. Sun, "Investigation on proton conductivity of La2Ce2O7in wet atmosphere : dependence on water vapor partial pressure" 12 (12): 457-463, 2012
76 W. H. Kim, "Intermediate temperature solid oxide fuel cell using (La, Sr)(Co, Fe)O 3 -based cathodes" 177 (177): 3211-3216, 2006
77 M. V. F. Schlupp, "Influence of microstructure on the cross-plane oxygen ion conductivity of yttria stabilized zirconia thin films advanced materials physics" 209 (209): 1414-1422, 2012
78 D. Neagu, "In situ growth of nanoparticles through control of non-stoichiometry" 5 (5): 916-923, 2013
79 J. Staniforth, "Implications for using biogas as a fuel source for solid oxide fuel cells: internal dry reforming in a small tubular solid oxide fuel cell" 81 (81): 19-23, 2002
80 H. Benveniste, "Impacts of nationally determined contributions on 2030 global greenhouse gas emissions" 13 (13): 014022-, 2010
81 J. H. Park, "Impact of nanostructured anode on low-temperature performance of thin-film-based anode-supported solid oxide fuel cells" 315 : 324-330, 2016
82 J. Ahn, "Identification of an actual strain induced effect on fast ion conduction in a thin-film electrolyte" 18 (18): 2794-2801, 2018
83 M. J. Khan, "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications : a technology status review" 86 (86): 1823-1835, 2009
84 Z. M. Huang, "Hydrogen generator system using Ru catalyst for PEMFC(proton exchange membrane fuel cell)applications" 51 : 230-236, 2013
85 P. E. Dodds, "Hydrogen and fuel cell technologies for heating : a review" 40 (40): 2065-2083, 2015
86 S. Hong, "High-performance ultra-thin film solid oxide fuel cell using anodized-aluminum-oxide supporting structure" 47 : 1-4, 2014
87 B. X. J. Chen, "High-performance cathode-supported SOFC with perovskite anode operating in weakly humidified hydrogen and methane" 2007 (2007): 12-16, 2007
88 J. M. Vohs, "High-performance SOFC cathodes prepared by infiltration" 21 (21): 943-956, 2009
89 P. Kofstad, "High temperature corrosion in SOFC environments" 52 (52): 69-75, 1992
90 M. Suzuki, "High performance solid oxide fuel cell cathode fabricated by electrochemical vapor deposition" 141 (141): 1928-1931, 1994
91 S. Krumdieck, "Growth rate, microstructure and conformality as a function of vapor exposure for zirconia thin films by pulsed-pressure MOCVD" 201 (201): 8908-8913, 2007
92 Y. L. Kuo, "Growth of 20 mol% Gd-doped ceria thin films by RF reactive sputtering : the O2/Ar flow ratio effect" 31 (31): 3127-3135, 2011
93 C. Peters, "Grainsize effects in YSZ thin-film electrolytes" 92 (92): 2017-2024, 2009
94 M. V. F. Schlupp, "Gadolinia doped ceria thin films prepared by aerosol assisted chemical vapor deposition and applications in intermediate-temperature solid oxide fuel cells" 13 (13): 658-665, 2013
95 A. VahidMohammadi, "Fundamentals of synthesis, sintering issues, and chemical stability of BaZr0. 1Ce0. 7Y0. 1Yb0. 1O3−δ proton conducting electrolyte for SOFCs" 162 (162): F803-F811, 2015
96 A. B. Stambouli, "Fuel cells, an alternative to standard sources of energy" 6 (6): 295-304, 2002
97 T. Elmer, "Fuel cell technology for domestic built environment applications : state of-the-art review" 42 : 913-931, 2015
98 J. Will, "Fabrication of thin electrolytes for second-generation solid oxide fuel cells" 131 (131): 79-96, 2000
99 Y. S. Hong, "Fabrication and characterization GDC electrolyte thin fi lms by e-beam technique for IT-SOFC" 11 (11): S163-S168, 2011
100 H. M. Ansari, "Epitaxial pore-free gadolinia-doped ceria thin films on yttria-stabilized zirconia by RF magnetron sputtering" 39 (39): 9749-9752, 2013
101 G. Yang, "Enhancing electrode performance by exsolved nanoparticles : a superior cobalt-free perovskite electrocatalyst for solid oxide fuel cells" 8 (8): 35308-35314, 2016
102 D. Ding, "Enhancing SOFC cathode performance by surface modification through infiltration" 7 (7): 552-575, 2014
103 L. Yang, "Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: baZr0. 1Ce0. 7Y0.l 2-xYbxO3-δ" 326 (326): 126-129, 2009
104 J. Hyung, "Enhanced oxygen exchange and incorporation at surface grain boundaries on an oxide ion conductor" 60 (60): 1-7, 2012
105 A. Hussain, "Emerging renewable and sustainable energy technologies : state of the art" 71 : 12-28, 2017
106 Q. Li, "Electrode properties of Sr doped La2 CuO4as new cathode material for intermediate-temperature SOFCs" 9 (9): 1508-1512, 2007
107 I. A. Amar, "Electrochemical synthesis of ammonia from N2 and H2O based on (Li, Na, K) 2CO3–Ce0. 8Gd0. 18Ca0. 02O2− δ composite electrolyte and CoFe2O4 cathode" 39 (39): 4322-4330, 2014
108 T. Omata, "Electrical properties of proton-conducting Ca2+-doped La2Zr2 O7 with a pyrochloretype structure" 148 (148): E252-E261, 2001
109 J. H. Joo, "Electrical conductivity of thin film ceria grown by pulsed laser deposition" 27 (27): 4227-4273, 2007
110 J. H. Joo, "Electrical conductivity of YSZ film grown by pulsed laser deposition" 177 (177): 1053-1057, 2006
111 A. A. Solovyev, "Effect of magnetron sputtered anode functional layer on the anode-supported solid oxide fuel cell performance" 44 (44): 30636-30643, 2019
112 Z. Wang, "Effect of co-sintering temperature on the performance of SOFC with YSZ electrolyte thin films fabricated by dip-coating method" 14 (14): 637-642, 2010
113 W. Li, "Effect of adding urea on performance of Cu/CeO2/yttria-stabilized zirconia anodes for solid oxide fuel cells prepared by impregnation method" 56 (56): 2230-2236, 2011
114 Hyegsoon An, "Effect of Nickel Addition on Sintering Behavior and Electrical Conductivity of BaCe0.35Zr0.5Y0.15O3-δ" 한국세라믹학회 56 (56): 91-97, 2019
115 T. Tsai, "Effect of LSM–YSZ cathode on thin-electrolyte solid oxide fuel cell performance" 93 (93): 207-217, 1997
116 Y. -H. Huang, "Double perovskites as anode materials for solid-oxide fuel cells" 312 (312): 254-257, 2006
117 H. J. Avila-paredes, "Dopant-concentration dependence of grain-boundary conductivity in ceria : a space-charge analysis" 19 (19): 4837-4842, 2009
118 Y. Zhang, "Dip-coating thin yttria-stabilized zirconia films for solid oxide fuel cell applications" 30 (30): 1049-1053, 2004
119 H. Moon, "Development of ITSOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing" 33 (33): 1758-1768, 2008
120 S. Sydyknazar, "Design, synthesis and performance of Ba-doped derivatives of SrMo0.9Fe0.1O3-δ perovskite as anode materials in SOFCs" 5 (5): 280-285, 2019
121 V. Cascos, "Design of new Ga-doped SrMoO3perovskites performing as anode materials in SOFC" 111 : 476-483, 2017
122 Young Jin Kim, "Degradation Comparison of Hydrogen and Internally Reformed Methane-Fueled Solid Oxide Fuel Cells" 한국세라믹학회 53 (53): 483-488, 2016
123 B. G. Pollet, "Current status of hybrid, battery and fuel cell electric vehicles: from electrochemistry to market prospects" 84 : 235-249, 2012
124 S. H. Cui, "Cobalt doped LaSrTiO3-δ as an anode catalyst : effect of Co nanoparticle precipitation on SOFCs operating on H2Scontaining hydrogen" 1 (1): 9689-9696, 2013
125 M. Z. Jacobson, "Cleaning the air and improving health with hydrogen fuel-cell vehicles" 308 (308): 1901-1905, 2005
126 E. Fabbri, "Chemically stable Pr and y Co-doped barium zirconate electrolytes with high proton conductivity for intermediate-temperature solid oxide fuel cells" 21 (21): 158-166, 2011
127 K. L. Choy, "Chemical vapour deposition of coating" 48 (48): 57-170, 2003
128 A. Nagata, "Characterization of solid oxide fuel cell device having a three-layer film structure grown by RF magnetron sputtering" 66 (66): 523-529, 2002
129 C. Sun, "Cathode materials for solid oxide fuel cells : a review" 14 (14): 1125-1144, 2010
130 J. Koh, "Carbon deposition and cell performance of Ni–YSZ anode support SOFC with methane fuel" 149 (149): 157-166, 2002
131 R. Kannan, "BaCe 0 85–x ZrxSm 0 15O 3-δ (001 < x < 03) (BCZS): effect of Zr content in BCZS on chemical stability in CO2 and H2O vapor, and proton conductivity" 160 (160): F18-F26, 2013
132 J. Lu, "Atomic layer deposition-Sequential self-limiting surface reactions for advanced catalyst ‘bottom-up’synthesis" 71 (71): 410-472, 2016
133 Y. Chung, "Assessment of mitigation pathways of GHG emissions from the Korean waste sector through 2050" 28 (28): 135-141, 2018
134 G. Meng, "Application of novel aerosol-assisted chemical vapor deposition techniques for SOFC thin films" 175 (175): 29-34, 2004
135 Y. Cheng, "An Investigation of LSF–YSZ Conductive Scaffolds for Infiltrated SOFC Cathodes" 164 (164): F525-F529, 2017
136 H. Z. Song, "Aerosol-assisted MOCVD growth of Gd2O3-doped CeO2thin SOFC electrolyte film on anode substrate" 156 (156): 249-254, 2003
137 G. Yang, "Advanced symmetric solid oxide fuel cell with an infiltrated K2NiF4-type La2NiO4electrode" 28 (28): 356-362, 2013
138 W. Z. Zhu, "A review on the status of anode materials for solid oxide fuel cells" 362 (362): 228-239, 2003
139 S. P. S. Shaikh, "A review on the selection of anode materials for solid-oxide fuel cells" 51 : 1-8, 2015
140 A. Kirubakaran, "A review on fuel cell technologies and power electronic interface" 13 (13): 2430-2440, 2009
141 R. E. Rosli, "A review of hightemperature proton exchange membrane fuel cell(HT-PEMFC)system" 42 (42): 9293-9314, 2017
142 F. Díaz-González, "A review of energy storage technologies for wind power applications" 16 (16): 2154-2171, 2012
143 N. Zhou, "A regenerative coking and sulfur resistant composite anode with Cu exsolution for intermediate temperature solid oxide fuel cells" 165 (165): F629-F634, 2018
144 J. Fernández-Moreno, "A portable system powered with hydrogen and one single air-breathing PEM fuel cell" 109 : 60-66, 2013
145 S. M. Lu, "A global review of enhanced geothermal system(EGS)" 81 : 2902-2921, 2018