The GaP crystals were grown by synthesis solute diffusion method and its properties were investigated. High quality single crystals were obtained by pull-down the crystal growing ampoule with velocity of 1.75mm/day. Etch pits density along vertical di...
The GaP crystals were grown by synthesis solute diffusion method and its properties were investigated. High quality single crystals were obtained by pull-down the crystal growing ampoule with velocity of 1.75mm/day. Etch pits density along vertical direction of ingot was increased from 3.8 ${\times}{10^4}$c$m^{-2}$ of the first freeze to 2.3 ${\times}{10^5}$c$m^2$ of the last freeze part. The carrier concentration and mobilities at room temperature were measured to 197.49cc$m^2$/V.sec and 6.75 ${\times}{10^{15}}$c$m^{-3]$, respectively. The temperature dependence of optical energy gap was empirically fitted to $E_g$(T)=[2.3383-(6.082${\times}{10^{-4}}$)$T^2$/(373. 096+TJeV. Photoluminescence spectra measured at low temperature were consist with sharp line-spectra near band-gap energy due to bound-exciton and phonon participation in band edge recombination process. Zn-diffusion depth in GaP was increased with square root of diffusion time and temperature dependence of diffusion coefficient was D(Tl = 3.2 ${\times}{10^3}$exp( - 3.486/$k_{\theta}$T)c$m^2$/sec. Electroluminescence spectra of p-n GaP homojunction diode are consisted with emission at 630nm due to recombination of donor in Zn-O complex center with shallow acceptors and near band edge emission at 550nm. Photon emission at current injection level of lower than 100m A was due to the band-filling mechanism.