RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Graphene oxide self-assembled with a cationic fullerene for high performance pseudo-capacitors

      한글로보기

      https://www.riss.kr/link?id=A107548972

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <▼1><P>Control of the microstructures of graphene oxide is realized by introducing a cationic fullerene, resulting in a high-performance pseudo-capacitor.</P></▼1><▼2><P>Control of the microstructures of graphene oxide (GO) is realized by introducing a cationic fullerene (CFU), resulting in a high-performance pseudo-capacitor. The strong electrostatic interaction between anionic GO and the CFU produces a self-assembled composite (GO/CFU), in which the CFU units intervene to form randomly stacked GO layers. The CFU acts as a spacer between GO layers, allowing a significant fraction of the oxygen-functional groups of GO to be redox-active. When tested as a pseudo-capacitor in 1.0 M H2SO4, the optimized GO/CFU composite delivers a capacitance of 357 F g<SUP>−1</SUP> at 0.4 A g<SUP>−1</SUP>, in contrast to 160 F g<SUP>−1</SUP> for GO alone, which is one of the greatest values reported for graphene composites with electro-inactive carbonaceous entities. The improvement in the capacitance by CFU incorporation is also evidenced at a high charge/discharge rate (285 and 137 F g<SUP>−1</SUP> at 5 A g<SUP>−1</SUP> for GO/CFU and GO, respectively). As a result, the GO/CFU composite delivers an energy density of 40 W h kg<SUP>−1</SUP> and a power density of 2793 W kg<SUP>−1</SUP> at 5 A g<SUP>−1</SUP>, in contrast to 19 W h kg<SUP>−1</SUP> and 2748 W kg<SUP>−1</SUP> for GO alone. During 5000 charge/discharge cycles at 5 A g<SUP>−1</SUP>, the capacitance of the GO/CFU composite increases slightly (4% increase in GO/CFU <I>vs.</I> 4% decrease in GO), which validates the effectiveness of a self-assembly strategy for high performance supercapacitor applications.</P></▼2>
      번역하기

      <▼1><P>Control of the microstructures of graphene oxide is realized by introducing a cationic fullerene, resulting in a high-performance pseudo-capacitor.</P></▼1><▼2><P>Control of the microstructures of graph...

      <▼1><P>Control of the microstructures of graphene oxide is realized by introducing a cationic fullerene, resulting in a high-performance pseudo-capacitor.</P></▼1><▼2><P>Control of the microstructures of graphene oxide (GO) is realized by introducing a cationic fullerene (CFU), resulting in a high-performance pseudo-capacitor. The strong electrostatic interaction between anionic GO and the CFU produces a self-assembled composite (GO/CFU), in which the CFU units intervene to form randomly stacked GO layers. The CFU acts as a spacer between GO layers, allowing a significant fraction of the oxygen-functional groups of GO to be redox-active. When tested as a pseudo-capacitor in 1.0 M H2SO4, the optimized GO/CFU composite delivers a capacitance of 357 F g<SUP>−1</SUP> at 0.4 A g<SUP>−1</SUP>, in contrast to 160 F g<SUP>−1</SUP> for GO alone, which is one of the greatest values reported for graphene composites with electro-inactive carbonaceous entities. The improvement in the capacitance by CFU incorporation is also evidenced at a high charge/discharge rate (285 and 137 F g<SUP>−1</SUP> at 5 A g<SUP>−1</SUP> for GO/CFU and GO, respectively). As a result, the GO/CFU composite delivers an energy density of 40 W h kg<SUP>−1</SUP> and a power density of 2793 W kg<SUP>−1</SUP> at 5 A g<SUP>−1</SUP>, in contrast to 19 W h kg<SUP>−1</SUP> and 2748 W kg<SUP>−1</SUP> for GO alone. During 5000 charge/discharge cycles at 5 A g<SUP>−1</SUP>, the capacitance of the GO/CFU composite increases slightly (4% increase in GO/CFU <I>vs.</I> 4% decrease in GO), which validates the effectiveness of a self-assembly strategy for high performance supercapacitor applications.</P></▼2>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼