RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재후보

      Oil과 Modified Styrene을 使用한 微粒 無煙炭의 凝集 = Agglomeration of fine anthracite using oil and modified styrene

      한글로보기

      https://www.riss.kr/link?id=A2075596

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Fine anthracite is very difficult to upgrade by conventional processes such as gravity concentration or froth flotation, because large quantities of fine coals are generated at the mining and preparation stages and a significant portion of these fine coals are mixed with gangue minerals.
      This study, therefore, was carried out for the purpose of improving recovery of low ash clean coal, effective beneficiation of low-grade coking coal and removal of sulphur from high-sulphur coals by employing the method of selective agglomeration using oil or polystrene flocculants, for coals which are generally hydrophobic in nature will be extracted by using flocculants.
      Studies were performed by varying solid concentraion concetration of bridging liquid, mixing speed and mixing time, balling speed and balling time, dispersant dosage, flocculant dosage, pulp pH, and particle size.
      The results were : when the methods of the oil agglomeration and selective flocculation were employ(in the two process the sample was ground to the size of -74 micron), 1) ash content of the agglomerated coal was 9.85, 7.83%, 2) combustibel recovery of it was 98.5%, 93.5%, respectively.
      It was observed in selective flocculation that polystyrene is an effective flocculant for coal, De-entrapment of shale from the concentrate flocculated by mechanical agitation was necessary for substantional reductions in final ash content.
      번역하기

      Fine anthracite is very difficult to upgrade by conventional processes such as gravity concentration or froth flotation, because large quantities of fine coals are generated at the mining and preparation stages and a significant portion of these fine ...

      Fine anthracite is very difficult to upgrade by conventional processes such as gravity concentration or froth flotation, because large quantities of fine coals are generated at the mining and preparation stages and a significant portion of these fine coals are mixed with gangue minerals.
      This study, therefore, was carried out for the purpose of improving recovery of low ash clean coal, effective beneficiation of low-grade coking coal and removal of sulphur from high-sulphur coals by employing the method of selective agglomeration using oil or polystrene flocculants, for coals which are generally hydrophobic in nature will be extracted by using flocculants.
      Studies were performed by varying solid concentraion concetration of bridging liquid, mixing speed and mixing time, balling speed and balling time, dispersant dosage, flocculant dosage, pulp pH, and particle size.
      The results were : when the methods of the oil agglomeration and selective flocculation were employ(in the two process the sample was ground to the size of -74 micron), 1) ash content of the agglomerated coal was 9.85, 7.83%, 2) combustibel recovery of it was 98.5%, 93.5%, respectively.
      It was observed in selective flocculation that polystyrene is an effective flocculant for coal, De-entrapment of shale from the concentrate flocculated by mechanical agitation was necessary for substantional reductions in final ash content.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼