In this paper we prove that a φ-recurrent (k, μ)-contact metricmanifold is an η-Einstein manifold with constant coefficients. Next, weprove that a three-dimensional locally φ-recurrent (k, μ)-contact metricmanifold is the space of constant curvat...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A103361535
전재복 (국민대학교) ; Ahmet Yildiz (Dumlupinar University (Turkey)) ; Uday Chand De (University of Kalyani)
2008
English
KCI등재,SCIE,SCOPUS
학술저널
689-700(12쪽)
3
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
In this paper we prove that a φ-recurrent (k, μ)-contact metricmanifold is an η-Einstein manifold with constant coefficients. Next, weprove that a three-dimensional locally φ-recurrent (k, μ)-contact metricmanifold is the space of constant curvat...
In this paper we prove that a φ-recurrent (k, μ)-contact metricmanifold is an η-Einstein manifold with constant coefficients. Next, weprove that a three-dimensional locally φ-recurrent (k, μ)-contact metricmanifold is the space of constant curvature. The existence of φ-recurrent(k, μ)-manifold is proved by a non-trivial example
참고문헌 (Reference)
1 E. Boeckx, "ϕネ-symmetric contact metric spaces" 41 (41): 409-416, 1999
2 U. C. De, "no.2" 33 (33): 43-48, 2003
3 D. E. Blair, "Two remarks on contact metric structures" 29 (29): 319-324, 1977
4 T. Takahashi, "Sasakian ϕネ-symmetric spaces" 29 (29): 91-113, 1977
5 S. Tanno, "Ricci curvatures of contact Riemannian manifolds" 40 (40): 441-448, 1988
6 U. C. De, "On Φ-recurrent N(k)-contact metric manifolds" 50 : 101-112, 2008
7 D.E. Blair, "On the concircular curvature tensor of a contact metric manifold" 대한수학회 42 (42): 883-892, 2005
8 J.-B. Jun, "On 3-dimensional almost contact metric manifolds" 34 (34): 293-301, 1994
9 D. E. Blair, "Contact metric manifolds satisfying a nullity condition" 91 (91): 189-214, 1995
10 B. J. Papantoniou, "Contact Riemannian manifolds satisfying R(ξ,X)R = 0 and ξ ∈ (k, )-nullity distribution" 40 (40): 149-161, 1993
1 E. Boeckx, "ϕネ-symmetric contact metric spaces" 41 (41): 409-416, 1999
2 U. C. De, "no.2" 33 (33): 43-48, 2003
3 D. E. Blair, "Two remarks on contact metric structures" 29 (29): 319-324, 1977
4 T. Takahashi, "Sasakian ϕネ-symmetric spaces" 29 (29): 91-113, 1977
5 S. Tanno, "Ricci curvatures of contact Riemannian manifolds" 40 (40): 441-448, 1988
6 U. C. De, "On Φ-recurrent N(k)-contact metric manifolds" 50 : 101-112, 2008
7 D.E. Blair, "On the concircular curvature tensor of a contact metric manifold" 대한수학회 42 (42): 883-892, 2005
8 J.-B. Jun, "On 3-dimensional almost contact metric manifolds" 34 (34): 293-301, 1994
9 D. E. Blair, "Contact metric manifolds satisfying a nullity condition" 91 (91): 189-214, 1995
10 B. J. Papantoniou, "Contact Riemannian manifolds satisfying R(ξ,X)R = 0 and ξ ∈ (k, )-nullity distribution" 40 (40): 149-161, 1993
11 E. Boeckx, "A full classification of contact metric (k, μ)-spaces" 44 (44): 212-219, 2000
12 C. Baikoussis, "A decomposition of the curvature tensor of a contact manifold satisfying R(X, Y )ξ = k(η(Y )X−η(X)Y )" University of Ioannina 1992
13 D. E. Blair, "A classification of 3-dimensional contact metric manifolds with Qϕ= ϕ. II" 20 (20): 379-383, 1992
14 D. E. Blair, "A classification of 3-dimensional contact metric manifolds with Qϕ= ϕ" 13 (13): 391-401, 1990
THE SEMIGROUPS OF BINARY SYSTEMS AND SOME PERSPECTIVES
학술지 이력
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2023 | 평가예정 | 해외DB학술지평가 신청대상 (해외등재 학술지 평가) | |
2020-01-01 | 평가 | 등재학술지 유지 (해외등재 학술지 평가) | ![]() |
2010-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
2008-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
2006-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
2004-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
2001-07-01 | 평가 | 등재학술지 선정 (등재후보2차) | ![]() |
1999-01-01 | 평가 | 등재후보학술지 선정 (신규평가) | ![]() |
학술지 인용정보
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.35 | 0.1 | 0.27 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.23 | 0.2 | 0.339 | 0.04 |