RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS KCI등재

      PVdF-HFP와 실리카가 코팅된 실크 견직물의 분리막 특성과 이를 채용한 리튬이온전지의 충방전 특성 = Separator Properties of Silk-Woven Fabrics Coated with PVdF-HFP and Silica and the Charge-Discharge Characteristics of Lithium-ion Batteries Adopting Them

      한글로보기

      https://www.riss.kr/link?id=A99656100

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Mixtures of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and silica nanoparticles arecoated on the surface of a silk fabrics separator. The coated separators are finally prepared by injecting an electrolyte solution and then characterized for use of lithium-ion battery separator/electrolyte. In the preparation, various contents of dibutylphthalate (DBP) as a plasticizer are used to enhance the formation of micropores within the coated membrane. The coated silk fabrics separators are characterized in terms of ionic conductivity, drenching rate, and electrochemical stability, and the charge-discharge profiles of lithium-ion batteries adopting the coated separators are also examined. As a result, the coated silk fabrics separator prepared using DBP 40~50 wt% and silica shows the superior separator properties and high-rate capability. This is due to (i) high sustainability of silk fabrics, (ii) the formation of micropores with the coated layer membrane by DBP, (iii) increase in drenching rate by silica nanoparticles to involve great enhance-ments in specific surface area and ionic conductivity.
      번역하기

      Mixtures of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and silica nanoparticles arecoated on the surface of a silk fabrics separator. The coated separators are finally prepared by injecting an electrolyte solution and then characteriz...

      Mixtures of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and silica nanoparticles arecoated on the surface of a silk fabrics separator. The coated separators are finally prepared by injecting an electrolyte solution and then characterized for use of lithium-ion battery separator/electrolyte. In the preparation, various contents of dibutylphthalate (DBP) as a plasticizer are used to enhance the formation of micropores within the coated membrane. The coated silk fabrics separators are characterized in terms of ionic conductivity, drenching rate, and electrochemical stability, and the charge-discharge profiles of lithium-ion batteries adopting the coated separators are also examined. As a result, the coated silk fabrics separator prepared using DBP 40~50 wt% and silica shows the superior separator properties and high-rate capability. This is due to (i) high sustainability of silk fabrics, (ii) the formation of micropores with the coated layer membrane by DBP, (iii) increase in drenching rate by silica nanoparticles to involve great enhance-ments in specific surface area and ionic conductivity.

      더보기

      참고문헌 (Reference)

      1 김광만, "상반전 기법으로 제조한 PVdF-HFP/(SiO2, TiO2) 고분자 전해질을 채용한 리튬금속 고분자 2차전지의 충방전 특성" 한국화학공학회 46 (46): 131-136, 2008

      2 Kim, K. M., "The Effect of Silica Addition on the Properties of Poly((vinylidene fluoride)- co-hexafluoropropylene)-Based Polymer Electrolytesx" 202 (202): 866-872, 2001

      3 Gohl, E .P. G., "Textile Science, 2nd Ed." Longman Cheshire 1980

      4 Christie, A. M., "Selection of New Kynar-Based Electrolytes for Lithium-ion Batteries" 74 (74): 77-86, 1998

      5 Wang, Y., "Polymer Gel Electrolyte Supported with Microporous Pololefin Membranes for Lithium Ion Polymer Battery" 148 (148): 443-449, 2002

      6 Kim, K. M., "Physical and Electrochemical Properties of PVdF-HFP/SiO2-Based Polymer Electrolytes Prepared by Using Dimethyl Acetamide Solvent and Water Non-Solvent" 208 (208): 887-895, 2007

      7 Kim, K. M., "Physical and Electrochemical Characterizations of Poly(vinylidene fluoride-co-hexafluoropropylene)/ SiO2-Based Polymer Electrolytes Prepared by Phase- Inversion Technique" 102 (102): 140-149, 2006

      8 Tarascon, J.-M., "Performance of Bellcore’s Plastic Rechargeable Li-ion Batteries" 86 (86): 49-54, 1996

      9 Croce, F., "Nano composite Polymer Electrolytes for Lithium Batteries" 394 (394): 456-458, 1998

      10 Stallworth, P. E., "NMR, DSC and High Pressure Electrical Conductivity Studies of Liq uid and Hybrid Electrolytes" 81 : 739-747, 1999

      1 김광만, "상반전 기법으로 제조한 PVdF-HFP/(SiO2, TiO2) 고분자 전해질을 채용한 리튬금속 고분자 2차전지의 충방전 특성" 한국화학공학회 46 (46): 131-136, 2008

      2 Kim, K. M., "The Effect of Silica Addition on the Properties of Poly((vinylidene fluoride)- co-hexafluoropropylene)-Based Polymer Electrolytesx" 202 (202): 866-872, 2001

      3 Gohl, E .P. G., "Textile Science, 2nd Ed." Longman Cheshire 1980

      4 Christie, A. M., "Selection of New Kynar-Based Electrolytes for Lithium-ion Batteries" 74 (74): 77-86, 1998

      5 Wang, Y., "Polymer Gel Electrolyte Supported with Microporous Pololefin Membranes for Lithium Ion Polymer Battery" 148 (148): 443-449, 2002

      6 Kim, K. M., "Physical and Electrochemical Properties of PVdF-HFP/SiO2-Based Polymer Electrolytes Prepared by Using Dimethyl Acetamide Solvent and Water Non-Solvent" 208 (208): 887-895, 2007

      7 Kim, K. M., "Physical and Electrochemical Characterizations of Poly(vinylidene fluoride-co-hexafluoropropylene)/ SiO2-Based Polymer Electrolytes Prepared by Phase- Inversion Technique" 102 (102): 140-149, 2006

      8 Tarascon, J.-M., "Performance of Bellcore’s Plastic Rechargeable Li-ion Batteries" 86 (86): 49-54, 1996

      9 Croce, F., "Nano composite Polymer Electrolytes for Lithium Batteries" 394 (394): 456-458, 1998

      10 Stallworth, P. E., "NMR, DSC and High Pressure Electrical Conductivity Studies of Liq uid and Hybrid Electrolytes" 81 : 739-747, 1999

      11 He, X., "In Situ Com posite of Nano SiO2-P(VDF-HFP) Porous Polymer Electrolytes for Li-ion Batteries" 51 (51): 1069-1075, 2005

      12 Abraham, K. M., "Highly Conductive PEO-ike Polymer Electrolytes" 9 (9): 1978-1988, 1997

      13 Jeong, H.-S., "Evaporation- Induced, Close-Packed Silica Nanoparticle-Embedded Nonwoven Composite Separator Membranes for High-Voltage/High- Rate Lithium-ion Batteries: Advantageous Effect of Highly Percolated, Electrolyte-philic Microporous Architecture" 415 : 513-519, 2012

      14 Capiglia, C., "Effects of Nanoscale SiO2 on the Thermal and Trans port Properties of Solvent-Free, Poly(ethylene oxide) (PEO)- Based Polymer Electrolytes" 118 (118): 73-79, 1999

      15 Jeong, H.-S., "Effect of Phase Inversion on Microporous Structure Development of Al2O3/Poly(vinylidene fluoride-hexafluoropropylene)- Based Ceramic Composite Separators for Lithium-ion Batteries" 195 (195): 6116-6121, 2010

      16 Jeong, H. -S., "Composition Ratio- Dependent Structural Evolution of SiO2/Poly(vinylidene fluoride- hexafluoropropylene)-Coated Poly(ethylene terephthalate) Nonwoven Composite Separators for Lithium-ion Batteries" 86 : 317-322, 2012

      17 Jeong, H.-S., "Closely Packed SiO2 Nanoparticles/ Poly(vinylidene fluoride-hexafluoropropylene) Layers-Coated Polyethylene Separators for Lithium-ion Batteries" 196 (196): 6716-6722, 2011

      18 Park, J.-H., "Close-Packed SiO2/Poly (methyl methacrylate) Binary Nanoparticles-Coated Polyethylene Separators for Lithium-ion Batteries" 195 (195): 8306-8310, 2010

      19 Park, J.-H., "Close-Packed Poly(methyl methacrylate) Nanoparticle Arrays-Coated Polyethylene Separators for High-Power Lithium-ion Polymer Batteries" 196 (196): 7035-7038, 2011

      20 Venugopal, G., "Characterization of Microporous Separators for Lithium-ion Batteries" 77 : 34-41, 1999

      21 Kim, K. M., "Characteristics of PVdF-HFP/TiO2 Composite Membrane Electrolytes Prepared by Phase Inversion and Conventional Casting Methods" 51 (51): 563-5644, 2006

      22 Kim, K. M., "Characteristics of PVdF-HFP/TiO2 Composite Electrolytes Prepared by a Phase Inversion Technique Using Dimethyl Acetamide Sovent and Water Non-Solvent" 291 (291): 1495-1502, 2006

      23 Kim, K. M., "Capacity and Cycle Performance of a Lithium-ion Polymer Battery Using Commercially Available LiNiCoO2" 123 (123): 69-74, 2003

      24 Sirichaisit, J., "Analysis of Structure/Property Relationships in Silkworm (Bombyx mori) and Spider Dragline (Nephila edulis) Silks Using Raman Spectroscopy" 4 : 387-394, 2003

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-12-02 학술지명변경 한글명 : 화학공학 -> Korean Chemical Engineering Research(HWAHAK KONGHAK) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-08-25 학술지명변경 외국어명 : Korean Chem. Eng. Res. -> Korean Chemical Engineering Research KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-09-27 학회명변경 영문명 : The Korean Institute Of Chemical Engineers -> The Korean Institute of Chemical Engineers KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.43 0.43 0.4
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.37 0.35 0.496 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼