RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      개방 데이터 마이닝에 효율적인 이동 윈도우 기법 = A Sliding Window Technique for Open Data Mining over Data Streams

      한글로보기

      https://www.riss.kr/link?id=A101433157

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      근래들어 구성 요소가 빠른 속도로 지속적으로 발생되는 무한 집합으로 정의되는 데이터 스트림에 대한 개방 데이터 마이닝 방법들이 활발히 제안되고 있다. 데이터 스트림에 내재된 정보들은 시간 흐름에 따른 변화의 가능성이 매우 높다. 따라서, 이러한 변화를 빠른 시간에 분석할 수 있다면 해당 데이터 스트림에 대한 분석에서 보다 유용한 정보를 제공할 수 있다. 본 논문에서는 개방 데이터 마이닝 환경에서 효율적인 최근 빈발 항목 탐색을 위한 이동 윈도우 기법을 제시한다. 해당 기법에서는 데이터 스트림이 지속적으로 확장되더라도 지연 추가 및 전지 작업을 적용하여 마이닝 수행과정에서의 메모리 사용량이 매우 작게 유지되며, 분석 대상 범위의 데이터 객체들을 반복적으로 탐색하지 않기 때문에 각 시점에서 마이닝 결과를 짧은 시간에 구할 수 있다. 더불어, 해당 방법은 데이터 스트림의 최근 정보에 집중한 분석을 통해 해당 데이터 집합의 변화를 효율적으로 감지할 수 있다.
      번역하기

      근래들어 구성 요소가 빠른 속도로 지속적으로 발생되는 무한 집합으로 정의되는 데이터 스트림에 대한 개방 데이터 마이닝 방법들이 활발히 제안되고 있다. 데이터 스트림에 내재된 정보...

      근래들어 구성 요소가 빠른 속도로 지속적으로 발생되는 무한 집합으로 정의되는 데이터 스트림에 대한 개방 데이터 마이닝 방법들이 활발히 제안되고 있다. 데이터 스트림에 내재된 정보들은 시간 흐름에 따른 변화의 가능성이 매우 높다. 따라서, 이러한 변화를 빠른 시간에 분석할 수 있다면 해당 데이터 스트림에 대한 분석에서 보다 유용한 정보를 제공할 수 있다. 본 논문에서는 개방 데이터 마이닝 환경에서 효율적인 최근 빈발 항목 탐색을 위한 이동 윈도우 기법을 제시한다. 해당 기법에서는 데이터 스트림이 지속적으로 확장되더라도 지연 추가 및 전지 작업을 적용하여 마이닝 수행과정에서의 메모리 사용량이 매우 작게 유지되며, 분석 대상 범위의 데이터 객체들을 반복적으로 탐색하지 않기 때문에 각 시점에서 마이닝 결과를 짧은 시간에 구할 수 있다. 더불어, 해당 방법은 데이터 스트림의 최근 정보에 집중한 분석을 통해 해당 데이터 집합의 변화를 효율적으로 감지할 수 있다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Recently open data mining methods focusing on a data stream that is a massive unbounded sequence of data elements continuously generated at a rapid rate are proposed actively. Knowledge embedded in a data stream is likely to be changed over time. Therefore, identifying the recent change of the knowledge quickly can provide valuable information for the analysis of the data stream. This paper proposes a sliding window technique for finding recently frequent itemsets, which is applied efficiently in open data mining. In the proposed technique, its memory usage is kept in a small space by delayed-insertion and pruning operations, and its mining result can be found in a short time since the data elements within its target range are not traversed repeatedly. Moreover, the proposed technique focused in the recent data elements, so that it can catch out the recent change of the data stream.
      번역하기

      Recently open data mining methods focusing on a data stream that is a massive unbounded sequence of data elements continuously generated at a rapid rate are proposed actively. Knowledge embedded in a data stream is likely to be changed over time. Ther...

      Recently open data mining methods focusing on a data stream that is a massive unbounded sequence of data elements continuously generated at a rapid rate are proposed actively. Knowledge embedded in a data stream is likely to be changed over time. Therefore, identifying the recent change of the knowledge quickly can provide valuable information for the analysis of the data stream. This paper proposes a sliding window technique for finding recently frequent itemsets, which is applied efficiently in open data mining. In the proposed technique, its memory usage is kept in a small space by delayed-insertion and pruning operations, and its mining result can be found in a short time since the data elements within its target range are not traversed repeatedly. Moreover, the proposed technique focused in the recent data elements, so that it can catch out the recent change of the data stream.

      더보기

      참고문헌 (Reference)

      1 "이원석. 데이터 스트림에서 개방 데이터 마이닝 기반의 빈발항목 탐색." 10-D (10-D): 2003.

      2 "Querying and Mining Data Streams: You Only Get One Look" 2002.

      3 "Online association rule mining" 145-156, 1999.

      4 "Mining time-changing data streams" 97-106, 2001.

      5 "Mining a stream of transactions for customer patterns" 305-310, 2001.

      6 "Maintaining stream statistics over sliding windows" 2002.

      7 "Finding frequent items in data streams" 2002.

      8 "Fast algorithms for mining association rules" 1994.

      9 "Dynamic itemset counting and implication rules for market basket data" 255-264, 1997.

      10 "Depth first generation of long patterns" 108-118, 2000

      1 "이원석. 데이터 스트림에서 개방 데이터 마이닝 기반의 빈발항목 탐색." 10-D (10-D): 2003.

      2 "Querying and Mining Data Streams: You Only Get One Look" 2002.

      3 "Online association rule mining" 145-156, 1999.

      4 "Mining time-changing data streams" 97-106, 2001.

      5 "Mining a stream of transactions for customer patterns" 305-310, 2001.

      6 "Maintaining stream statistics over sliding windows" 2002.

      7 "Finding frequent items in data streams" 2002.

      8 "Fast algorithms for mining association rules" 1994.

      9 "Dynamic itemset counting and implication rules for market basket data" 255-264, 1997.

      10 "Depth first generation of long patterns" 108-118, 2000

      11 "Approximate frequency counts over data streams" 2002.

      12 "An efficient algorithm for mining association rules in large databases" 432-444, 1995.

      13 "An efficient algorithm for incremental mining" 263-270, 2001

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2012-10-01 평가 학술지 통합(등재유지)
      2010-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지(등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정(등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS(등재후보1차) KCI등재후보
      2000-07-01 평가 등재후보학술지 선정(신규평가) KCI등재후보
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼