RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      뇌컴퓨터접속(BCI) 무경험자에 대한 EEG-BCI 알고리즘 성능평가 = Performance Evaluation of EEG-BCI Interface Algorithm in BCI(Brain Computer Interface)-Naive Subjects

      한글로보기

      https://www.riss.kr/link?id=A101119478

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The Performance research about EEG-BCI algorithm in BCI-naive subjects is very important for evaluating the applicability to the public. We analyzed the result of the performance evaluation experiment about the EEG-BCI algorithm in BCI-naive subjects on three different aspects. The EEG-BCI algorithm used in this paper is composed of the common spatial pattern(CSP) and the least square linear classifier. CSP is used for obtaining the characteristic of event related desynchronization, and the least square linear classifier classifies the motor imagery EEG data of the left hand or right hand. The performance evaluation experiments about EEG-BCI algorithm is conducted for 40 men and women whose age are 23.87${\pm}$2.47. The performance evaluation about EEG-BCI algorithm in BCI-naive subjects is analyzed in terms of the accuracy, the relation between the information transfer rate and the accuracy, and the performance changes when the different types of cue were used in the training session and testing session. On the result of experiment, BCI-naive group has about 20% subjects whose accuracy exceed 0.7. And this results of the accuracy were not effected significantly by the types of cue. The Information transfer rate is in the inverse proportion to the accuracy. And the accuracy shows the severe deterioration when the motor imagery is less then 2 seconds.
      번역하기

      The Performance research about EEG-BCI algorithm in BCI-naive subjects is very important for evaluating the applicability to the public. We analyzed the result of the performance evaluation experiment about the EEG-BCI algorithm in BCI-naive subjects ...

      The Performance research about EEG-BCI algorithm in BCI-naive subjects is very important for evaluating the applicability to the public. We analyzed the result of the performance evaluation experiment about the EEG-BCI algorithm in BCI-naive subjects on three different aspects. The EEG-BCI algorithm used in this paper is composed of the common spatial pattern(CSP) and the least square linear classifier. CSP is used for obtaining the characteristic of event related desynchronization, and the least square linear classifier classifies the motor imagery EEG data of the left hand or right hand. The performance evaluation experiments about EEG-BCI algorithm is conducted for 40 men and women whose age are 23.87${\pm}$2.47. The performance evaluation about EEG-BCI algorithm in BCI-naive subjects is analyzed in terms of the accuracy, the relation between the information transfer rate and the accuracy, and the performance changes when the different types of cue were used in the training session and testing session. On the result of experiment, BCI-naive group has about 20% subjects whose accuracy exceed 0.7. And this results of the accuracy were not effected significantly by the types of cue. The Information transfer rate is in the inverse proportion to the accuracy. And the accuracy shows the severe deterioration when the motor imagery is less then 2 seconds.

      더보기

      참고문헌 (Reference)

      1 G. Dornhege, "Towards Brain-Computer Interfacing" MIT Press 2006

      2 Blankertz B, "The Berlin Brain-Computer Interface: Accurate Performance From First-Session in BCI-NaÏve Subjects" 55 (55): 2452-2462, 2008

      3 C. Guger, "Real-Time EEG Analysis with Subject-Specific Spatial Patterns for a Brain–Computer Interface (BCI)" 8 (8): 447-456, 2000

      4 Blankertz B, "Optimizing Spatial filters for Robust EEG Single-Trial Analysis" 25 (25): 41-56, 2008

      5 Ramoser H., "Optimal spatial filtering of single trial EEG during imagined handmovement" 8 (8): 441-446, 2000

      6 Pfurtscheller G, "Motor imagery activates primary sensorimotor area in humans" 239 (239): 65-68, 1997

      7 C. Guger, "How Many People are Able to Operate an EEG-Based Brain-Computer Interface (BCI)?" 11 (11): 145-147, 2003

      8 Pfurtscheller G, "Event-related EEG/MEG synchronization and desynchronization: basic principles" 110 (110): 1842-1857, 1999

      9 Dennis J. Mcfarland, "Design and operation of an EEG-based brain-computer interface with digital signal processing technology" 29 (29): 337-345, 1997

      10 Yijun Wang, "Common Spatial Pattern Method for Channel Selection in Motor Imagery Based Brain-computer Interface" 5392-5395, 2006

      1 G. Dornhege, "Towards Brain-Computer Interfacing" MIT Press 2006

      2 Blankertz B, "The Berlin Brain-Computer Interface: Accurate Performance From First-Session in BCI-NaÏve Subjects" 55 (55): 2452-2462, 2008

      3 C. Guger, "Real-Time EEG Analysis with Subject-Specific Spatial Patterns for a Brain–Computer Interface (BCI)" 8 (8): 447-456, 2000

      4 Blankertz B, "Optimizing Spatial filters for Robust EEG Single-Trial Analysis" 25 (25): 41-56, 2008

      5 Ramoser H., "Optimal spatial filtering of single trial EEG during imagined handmovement" 8 (8): 441-446, 2000

      6 Pfurtscheller G, "Motor imagery activates primary sensorimotor area in humans" 239 (239): 65-68, 1997

      7 C. Guger, "How Many People are Able to Operate an EEG-Based Brain-Computer Interface (BCI)?" 11 (11): 145-147, 2003

      8 Pfurtscheller G, "Event-related EEG/MEG synchronization and desynchronization: basic principles" 110 (110): 1842-1857, 1999

      9 Dennis J. Mcfarland, "Design and operation of an EEG-based brain-computer interface with digital signal processing technology" 29 (29): 337-345, 1997

      10 Yijun Wang, "Common Spatial Pattern Method for Channel Selection in Motor Imagery Based Brain-computer Interface" 5392-5395, 2006

      11 Leeb R, "Brain–Computer Communication: Motivation, Aim, and Impact of Exploring a Virtual Apartment" 15 (15): 473-482, 2007

      12 F Lotte, "A review of classification algorithms for EEG-based brain-computer interfaces" 4 : R1-R13, 2007

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2017-12-01 평가 등재후보로 하락 (계속평가) KCI등재후보
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-10-06 학술지명변경 외국어명 : 미등록 -> Joural of Biomedical Engineering Research KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.08 0.08 0.12
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.11 0.09 0.307 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼