RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      내재적 경계조건 방법을 적용한 비정렬 격자 기반의 정상 압축성 Navier-Stokes 해석자

      한글로보기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Numerical boundary conditions are as important as the governing equations when analyzing the fluid flows numerically. An explicit boundary condition method updates the solutions at the boundaries with extrapolation from the interior of the computational domain, while the implicit boundary condition method in conjunction with an implicit time integration method solves the solutions of the entire computational domain including the boundaries simultaneously. The implicit boundary condition method, therefore, is more robust than the explicit boundary condition method. In this paper, steady compressible 2-Dimensional Navier-Stokes solver is developed. We present the implicit boundary condition method coupled with LU-SGS(Lower Upper Symmetric Gauss Seidel) method. Also, the explicit boundary condition method is implemented for comparison. The preconditioning Navier-Stokes equations are solved on unstructured meshes. The numerical computations for a number of flows show that the implicit boundary condition method can give accurate solutions.
      번역하기

      Numerical boundary conditions are as important as the governing equations when analyzing the fluid flows numerically. An explicit boundary condition method updates the solutions at the boundaries with extrapolation from the interior of the computation...

      Numerical boundary conditions are as important as the governing equations when analyzing the fluid flows numerically. An explicit boundary condition method updates the solutions at the boundaries with extrapolation from the interior of the computational domain, while the implicit boundary condition method in conjunction with an implicit time integration method solves the solutions of the entire computational domain including the boundaries simultaneously. The implicit boundary condition method, therefore, is more robust than the explicit boundary condition method. In this paper, steady compressible 2-Dimensional Navier-Stokes solver is developed. We present the implicit boundary condition method coupled with LU-SGS(Lower Upper Symmetric Gauss Seidel) method. Also, the explicit boundary condition method is implemented for comparison. The preconditioning Navier-Stokes equations are solved on unstructured meshes. The numerical computations for a number of flows show that the implicit boundary condition method can give accurate solutions.

      더보기

      참고문헌 (Reference)

      1 van Leer, B., "Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov's Method" 32 : 101-136, 1979

      2 Hakkinen, R.J., "The Interaction of an Oblique Shock Wave with a Laminar Boundary Layer"

      3 Weiss, J.M., "Preconditioning Applied to Variable and Constant Density Flows" 33 (33): 2050-2057, 1995

      4 Hirsch, H., "Numerical computation of internal and external flows, computational methods for inviscid and viscous flows" John Wiley & Sons Ltd 1990

      5 Tuann, S.-Y., "Numerical Studies of the Flow around a Circular Cylinder by a Finite Element Method" 6 (6): 219-240, 1978

      6 Denis, S.C.R., "Numerical Solutions for Steady Flow Past a Circular Cylinder at Reynolds Numbers up to 100" 42 (42): 471-489, 1970

      7 "NPARC Alliance Verification and Validation Archive"

      8 Lee, H., "Investigation on Characteristics of Modified Artificial Compressibility Method" 2010

      9 Luo, H., "Implicit schemes and boundary conditions for compressible flows on unstructured meshes" 1994

      10 White, Frank M., "Fluid mechanics" McGraw-Hill 2003

      1 van Leer, B., "Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov's Method" 32 : 101-136, 1979

      2 Hakkinen, R.J., "The Interaction of an Oblique Shock Wave with a Laminar Boundary Layer"

      3 Weiss, J.M., "Preconditioning Applied to Variable and Constant Density Flows" 33 (33): 2050-2057, 1995

      4 Hirsch, H., "Numerical computation of internal and external flows, computational methods for inviscid and viscous flows" John Wiley & Sons Ltd 1990

      5 Tuann, S.-Y., "Numerical Studies of the Flow around a Circular Cylinder by a Finite Element Method" 6 (6): 219-240, 1978

      6 Denis, S.C.R., "Numerical Solutions for Steady Flow Past a Circular Cylinder at Reynolds Numbers up to 100" 42 (42): 471-489, 1970

      7 "NPARC Alliance Verification and Validation Archive"

      8 Lee, H., "Investigation on Characteristics of Modified Artificial Compressibility Method" 2010

      9 Luo, H., "Implicit schemes and boundary conditions for compressible flows on unstructured meshes" 1994

      10 White, Frank M., "Fluid mechanics" McGraw-Hill 2003

      11 Chakravarthy, S.R., "Euler Equations Implicit Schemes and Implicit Boundary Conditions" 1982

      12 Venkatakrishnan, V., "Convergence to Steady State Solutions of the Euler Equations on Unstructured Grids with Limiters" 118 (118): 120-130, 1995

      13 Choi, Y., "Computation of Low Mach Number Compressible Flow" The Pennsylvania State Univeristy 1989

      14 Thompkins, W.T., "Boundary treatments for implicit solutions to Euler and Navier-Stokes equations" 48 (48): 302-311, 1982

      15 Roe, P.L., "Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes" 43 (43): 357-372, 1981

      16 Ni, R.-H., "A Multiple-Grid Scheme for Solving the Euler Equations" 20 (20): 1565-1571, 1982

      17 Haselbacher, A.C., "A Grid-Transparent Numerical Method for Compressible Viscous Flows on Mixed Unstructured Grids" Loughborough University. 1999

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-06-16 학술지명변경 외국어명 : Jpurnal of Computatuonal Fluids Engineering -> Korean Society of Computatuonal Fluids Engineering KCI등재후보
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2004-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.2 0.2 0.19
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.16 0.15 0.405 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼