RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      New Permeable Structure for Controlling Debris Flows in the Wenjiagou Gully

      한글로보기

      https://www.riss.kr/link?id=A105927027

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Aimed to control debris flows more effectively, we attempt to develop a new structure called a “sloping roof grill dam”, which consists of guidance walls, separation grills and lateral deposit areas. A series of flume tests were performed to verif...

      Aimed to control debris flows more effectively, we attempt to develop a new structure called a “sloping roof grill dam”, which consists of guidance walls, separation grills and lateral deposit areas. A series of flume tests were performed to verify the function of this new structure, focusing on the trapping efficiency (β ), deceleration efficiency (μ) and coarse-fine sediment separation extents (η) under different conditions of structure and debris flows. Experimental results show that both the trapping and deceleration efficiency increase with a decrease in permeability, whereas the separation extent shown the opposite effect. Multiple regression analysis indicates that β and η are linearly dependent on the permeability, deceleration efficiency and magnitudes of debris flow. In addition, an increase in beam gap can lead to an increase in the impact area downstream for the debris flow after the control of the structure.
      Finally, a two-level installation of the structure is tested to determine whether there is an enhancement of the debris control, which indicated that although the trapping effect of the two-level structure is considerably greater than that of a single-level structure (2.11 times at maximum), the separation extent of the two-level structure is not distinct and may be even lower.

      더보기

      참고문헌 (Reference)

      1 You, Y., "“8.13” extra large debris flow disaster in Wenjia Gully of Qingping Township, Mianzhu, Sichuan Province" 26 (26): 68-72, 2011

      2 Yong Li, "Variation in grain size distribution in debris flow" Springer Nature 12 (12): 682-688, 2015

      3 Richard M. Iverson, "The physics of debris flows" American Geophysical Union (AGU) 35 (35): 245-296, 1997

      4 Takahisa MIZUYAMA, "Structural Countermeasures for Debris Flow Disasters" Japan Society of Erosion Control Engineering 1 (1): 38-43, 2008

      5 Peggy A. Johnson, "Slit Dam Design for Debris Flow Mitigation" American Society of Civil Engineers (ASCE) 115 (115): 1293-1296, 1989

      6 Richard A. Shakesby, "Sieve deposition by debris flow on a permeable substrate, Leirdalen, Norway" Wiley 27 (27): 1031-1041, 2002

      7 Terence C. Blair, "Sedimentology of the debris-flow-dominated Warm Spring Canyon alluvial fan, Death Valley, California" Wiley 46 (46): 941-965, 1999

      8 J. Zhang, "Scale model for the confluent area of debris flow and main river: a case study of the Wenjia Gully" Copernicus GmbH 13 (13): 3083-3093, 2013

      9 Yu, B., "Research on the giant debris flow hazards in Zhouqu County, Gansu Province on August 7, 2010" 4 : 437-444, 2010

      10 P COUSSOT, "Recognition, classification and mechanical description of debris flows" Elsevier BV 40 (40): 209-227, 1996

      1 You, Y., "“8.13” extra large debris flow disaster in Wenjia Gully of Qingping Township, Mianzhu, Sichuan Province" 26 (26): 68-72, 2011

      2 Yong Li, "Variation in grain size distribution in debris flow" Springer Nature 12 (12): 682-688, 2015

      3 Richard M. Iverson, "The physics of debris flows" American Geophysical Union (AGU) 35 (35): 245-296, 1997

      4 Takahisa MIZUYAMA, "Structural Countermeasures for Debris Flow Disasters" Japan Society of Erosion Control Engineering 1 (1): 38-43, 2008

      5 Peggy A. Johnson, "Slit Dam Design for Debris Flow Mitigation" American Society of Civil Engineers (ASCE) 115 (115): 1293-1296, 1989

      6 Richard A. Shakesby, "Sieve deposition by debris flow on a permeable substrate, Leirdalen, Norway" Wiley 27 (27): 1031-1041, 2002

      7 Terence C. Blair, "Sedimentology of the debris-flow-dominated Warm Spring Canyon alluvial fan, Death Valley, California" Wiley 46 (46): 941-965, 1999

      8 J. Zhang, "Scale model for the confluent area of debris flow and main river: a case study of the Wenjia Gully" Copernicus GmbH 13 (13): 3083-3093, 2013

      9 Yu, B., "Research on the giant debris flow hazards in Zhouqu County, Gansu Province on August 7, 2010" 4 : 437-444, 2010

      10 P COUSSOT, "Recognition, classification and mechanical description of debris flows" Elsevier BV 40 (40): 209-227, 1996

      11 Okubo, S., "Recent Developments on Debris Flows Vol. 64" Springer 166-185, 1997

      12 Jaeggi, M. N. R., "Recent Developments on Debris Flows" Springer 186-207, 1997

      13 Fei, X. J., "Movement mechanism and disaster control for debris flow" Tsinghua University Press 2004

      14 Wendeler, C., "Laboratory tests for the optimization of mesh size for flexible debris-flow barriers" Copernicus GmbH 15 (15): 2099-2118, 2015

      15 Wendeler, C., "Hazard prevention using flexible multi-level debris flow barriers" 1 : 547-554, 2008

      16 Itoh, T., "Fundamental hydraulic flume tests focused on sediment control function using a grid-type high dam" ASCE 1051-2061, 2011

      17 Ng, C. W. W., "Flume modelling of debris flow resisting baffles" 17-18, 2012

      18 Vandine, D. F., "Flow Control Structures for Forest Engineering" British Columbia Ministry of Forests Research Program

      19 Wendeler, C., "Field testing and numerical modeling of flexible debris flow barriers" 1573-1578, 2006

      20 Holly Brunkal, "Exploration of design parameters for a dewatering structure for debris flow mitigation" Elsevier BV 208 : 81-92, 2016

      21 Yi-fei Cui, "Experimental study on the moving characteristics of fine grains in wide grading unconsolidated soil under heavy rainfall" Springer Nature 14 (14): 417-431, 2017

      22 Elisabeth T. Bowman, "Experimental modelling of debris flow behaviour using a geotechnical centrifuge" Canadian Science Publishing 47 (47): 742-762, 2010

      23 Dieter Rickenmann, "Empirical relationships for debris flows" Springer Nature 19 (19): 47-77, 1999

      24 Han Wenbing, "Efficiency of slit dam prevention against non-viscous debris flow" Springer Nature 11 (11): 865-869, 2006

      25 Roland Kaitna, "Effects of coarse grain size distribution and fine particle content on pore fluid pressure and shear behavior in experimental debris flows" American Geophysical Union (AGU) 121 (121): 415-441, 2016

      26 Silva, M., "Effect of plan layout on the sediment control efficiency of slit-check dams for stony type debris flows mitigation" 259-270, 2015

      27 Jia-wen Zhou, "Discrete element modeling of the mass movement and loose material supplying the gully process of a debris avalanche in the Bayi Gully, Southwest China" Elsevier BV 99 : 95-111, 2015

      28 Costa, J. E., "Developments and Applications of Geomorphology" 268-317, 1984

      29 Lien, H. P., "Design of slit dams for control stony debris flows" 18 (18): 74-87, 2003

      30 Volkwein, A., "Design of flexible debris flow barriers" Università La Sapienza 1093-1100, 2011

      31 Watanabe, M., "Debris-flow dewatering break : an efficient tool to control upstream debris-flow to secure road transportation and community safety" United Nations University 2008

      32 Jakob, D. M., "Debris-flow Hazards and Related Phenomena" Springer 2005

      33 Jia-wen Zhou, "Debris flows introduced in landslide deposits under rainfall conditions: The case of Wenjiagou gully" Springer Nature 10 (10): 249-260, 2013

      34 Hubl, J., "Debris flow impact estimation" 137-148, 2009

      35 C. Tang, "Catastrophic debris flows on 13 August 2010 in the Qingping area, southwestern China: The combined effects of a strong earthquake and subsequent rainstorms" Elsevier BV 139-140 (139-140): 559-576, 2012

      36 Tao Xie, "Calculation of the separation grid design length in a new water–sediment separation structure for debris flow defense" Springer Nature 75 (75): 101-108, 2016

      37 C.-X. Guo, "A theoretical model for the initiation of debris flow in unconsolidated soil under hydrodynamic conditions" Copernicus GmbH 2 (2): 4487-4524, 2014

      38 Tao Xie, "A new water–sediment separation structure for debris flow defense and its model test" Springer Nature 73 (73): 947-958, 2014

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-05-27 학술지명변경 한글명 : 대한토목학회 영문논문집 -> KSCE Journal of Civil Engineering KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.59 0.12 0.49
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.42 0.39 0.286 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼