This paper considers the problem of optimum shaping of steel arches subjected to general loading. The weight of arches is considered as the objective function and the appropriate combinations of section forces, material volume, arc length, and closed ...
This paper considers the problem of optimum shaping of steel arches subjected to general loading. The weight of arches is considered as the objective function and the appropriate combinations of section forces, material volume, arc length, and closed section area of arches are considered as the stress constraints. The shape optimization problems are formulated in terms of the design variables of sectional areas of each element. First the cost sensitivity of the design is investigated. Then the investigation comprises the search for the optimum arch form as well as the optimum area distribution along the arch. Two spaces of shape optimization algorithm will be treated, the first space corresponding to the section optimization by the Modified Newton Raphson Method, and the second space to the coordinate optimization by the Powell Method. The optimization algorithm is evaluated and the optimum span-rise ratios for the given arches are evaluated.