RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      인간 컴퓨터 상호작용 : Dynamic Time Warping 기반의 특징 강조형 제스처 인식 모델 = Human Computer Interaction : Feature-Strengthened Gesture Recognition Model based on Dynamic Time Warping

      한글로보기

      https://www.riss.kr/link?id=A100411948

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      As smart devices get popular, research on gesture recognition using their embedded-accelerometer draw attention. As Dynamic Time Warping(DTW), recently, has been used to perform gesture recognition on data sequence from accelerometer, in this paper we propose Feature-Strengthened Gesture Recognition(FsGr) Model which can improve the recognition success rate when DTW is used. FsGr model defines feature-strengthened parts of data sequences to similar gestures which might produce unsuccessful recognition, and performs additional DTW on them to improve the recognition rate. In training phase, FsGr model identifies sets of similar gestures, and analyze features of gestures per each set. During recognition phase, it makes additional recognition attempt based on the result of feature analysis to improve the recognition success rate, when the result of first recognition attempt belongs to a set of similar gestures. We present the performance result of FsGr model, by experimenting the recognition of lower case alphabets.
      번역하기

      As smart devices get popular, research on gesture recognition using their embedded-accelerometer draw attention. As Dynamic Time Warping(DTW), recently, has been used to perform gesture recognition on data sequence from accelerometer, in this paper we...

      As smart devices get popular, research on gesture recognition using their embedded-accelerometer draw attention. As Dynamic Time Warping(DTW), recently, has been used to perform gesture recognition on data sequence from accelerometer, in this paper we propose Feature-Strengthened Gesture Recognition(FsGr) Model which can improve the recognition success rate when DTW is used. FsGr model defines feature-strengthened parts of data sequences to similar gestures which might produce unsuccessful recognition, and performs additional DTW on them to improve the recognition rate. In training phase, FsGr model identifies sets of similar gestures, and analyze features of gestures per each set. During recognition phase, it makes additional recognition attempt based on the result of feature analysis to improve the recognition success rate, when the result of first recognition attempt belongs to a set of similar gestures. We present the performance result of FsGr model, by experimenting the recognition of lower case alphabets.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼