RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      데이터 공학 : 긍정/부정 비대칭도를 이용한 소수상품평의 검색 = Data Engineering : Retrieving Minority Product Reviews Using Positive/Negative Skewness

      한글로보기

      https://www.riss.kr/link?id=A100411945

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      A given product`s online product reviews build up to form largely positive or negative reviews or mixed reviews that include both the positive and negative reviews. While the homogeneously positive or negative reviews help readers identify the generally praised or criticized product, the mixed reviews with minority opinions potentially contain valuable information about the product. We present a method of retrieving minority opinions from the online product reviews using the skewness of positive/negative reviews. The proposed method first classifies the positive/negative product reviews using a sentiment dictionary and then calculates the skewness of the classified results to identify minority reviews. Minority review retrieval experiments were conducted on smartphone and movie reviews, and the F1-measures were 24.6% (smartphone) and 15.9% (movie) and the accuracies were 56.8% and 46.8% when the individual reviews` sentiment classification accuracies were 85.3% and 78.8%. The theoretical performance of minority review retrieval is also discussed.
      번역하기

      A given product`s online product reviews build up to form largely positive or negative reviews or mixed reviews that include both the positive and negative reviews. While the homogeneously positive or negative reviews help readers identify the general...

      A given product`s online product reviews build up to form largely positive or negative reviews or mixed reviews that include both the positive and negative reviews. While the homogeneously positive or negative reviews help readers identify the generally praised or criticized product, the mixed reviews with minority opinions potentially contain valuable information about the product. We present a method of retrieving minority opinions from the online product reviews using the skewness of positive/negative reviews. The proposed method first classifies the positive/negative product reviews using a sentiment dictionary and then calculates the skewness of the classified results to identify minority reviews. Minority review retrieval experiments were conducted on smartphone and movie reviews, and the F1-measures were 24.6% (smartphone) and 15.9% (movie) and the accuracies were 56.8% and 46.8% when the individual reviews` sentiment classification accuracies were 85.3% and 78.8%. The theoretical performance of minority review retrieval is also discussed.

      더보기

      참고문헌 (Reference)

      1 C. Strapparava, "WordNet-Affect : An affective extension of WordNet" 1083-1086, 2004

      2 S. M. Mudambi, "What makes a helpful online review? A study of customer reviews on Amazon. com" 34 (34): 185-200, 2010

      3 Z. Zhang, "Utility scoring of product reviews" 51-57, 2006

      4 E. Cambria, "SenticNet 2 : A semantic and affective resource for opinion mining and sentiment analysis" 202-207, 2012

      5 S. Baccianella, "SentiWordNet 3. 0 : An enhanced lexical resource for sentiment analysis and opinion mining" 2200-2204, 2010

      6 J. C. de Albornoz, "SentiSense : Aneasily scalable concept-based affective lexicon for sentiment analysis" 3562-3567, 2012

      7 M. G. Bulmer, "Principles of Statistics" Dover 1979

      8 B. Pang, "Opinion mining and sentiment analysis" 2 (2): 1-135, 2008

      9 M. Hu, "Mining and summarizing customer reviews" 168-177, 2004

      10 D. P. Doane, "Measuring skewness: A forgotten statistic?" 19 (19): 1-18, 2011

      1 C. Strapparava, "WordNet-Affect : An affective extension of WordNet" 1083-1086, 2004

      2 S. M. Mudambi, "What makes a helpful online review? A study of customer reviews on Amazon. com" 34 (34): 185-200, 2010

      3 Z. Zhang, "Utility scoring of product reviews" 51-57, 2006

      4 E. Cambria, "SenticNet 2 : A semantic and affective resource for opinion mining and sentiment analysis" 202-207, 2012

      5 S. Baccianella, "SentiWordNet 3. 0 : An enhanced lexical resource for sentiment analysis and opinion mining" 2200-2204, 2010

      6 J. C. de Albornoz, "SentiSense : Aneasily scalable concept-based affective lexicon for sentiment analysis" 3562-3567, 2012

      7 M. G. Bulmer, "Principles of Statistics" Dover 1979

      8 B. Pang, "Opinion mining and sentiment analysis" 2 (2): 1-135, 2008

      9 M. Hu, "Mining and summarizing customer reviews" 168-177, 2004

      10 D. P. Doane, "Measuring skewness: A forgotten statistic?" 19 (19): 1-18, 2011

      11 E. Riloff, "Learning extraction patterns for subjective expressions" 105-112, 2003

      12 S. Cerini, "Language Resources and Linguistic Theory" iFranco Angeli 2007

      13 C. D. Manning, "Introduction to Information Retrieval" Cambridge University Press 2008

      14 H. Cho, "Data-driven integration of multiple sentiment dictionaries for lexicon-based sentiment classification of product reviews" 71 : 61-71, 2014

      15 M. Bradley, "Affective Norms for English Words (ANEW): Instruction manual and affective ratings" The Center for Research in Psychophysiology, University of Florida 1999

      16 F. Å. Nielsen, "A new ANEW: Evaluation of a word list for sentiment analysis in microblogs" 2011

      17 P. J. Stone, "A computer approach to content analysis: Studies using the General Inquirer system" 1963

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2012-10-31 학술지명변경 한글명 : 소프트웨어 및 데이터 공학 -> 정보처리학회논문지. 소프트웨어 및 데이터 공학 KCI등재
      2012-10-10 학술지명변경 한글명 : 정보처리학회논문지B -> 소프트웨어 및 데이터 공학
      외국어명 : The KIPS Transactions : Part B -> KIPS Transactions on Software and Data Engineering
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2000-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.35 0.35 0.28
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.23 0.19 0.511 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼