RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Prediction of the Upper and Lower Bounds of Magnetic Vector Potentials in a Linear Magnetostatic Field with Uncertain-but-Bounded Parameters

      한글로보기

      https://www.riss.kr/link?id=A105234076

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Uncertainty is ubiquitous in practical engineering and scientific research. The uncertainties in parameters can be treated as interval numbers. The prediction of upper and lower bounds of the response of a system including uncertain parameters is of immense significance in uncertainty analysis. This paper aims to evaluate the upper and lower bounds of magnetic vector potentials in a linear magnetostatic field efficiently with uncertainbut- bounded parameters. The uncertain-but-bounded parameters are represented by interval notations. By performing Taylor series expansion on the magnetic vector potentials obtained from the equilibrium governing equation and by using the properties of interval mathematics, we can calculate the upper and lower bounds of the magnetic vector potentials of a linear magnetostatic field. In order to evaluate the accuracy and efficiency of the proposed method, two numerical examples are used. The results illustrate that the precision of the proposed method is acceptable for engineering applications, and the computation time of the proposed method is significantly less than that of the Monte Carlo simulation, which is the most widely used method related to uncertainties. The Monte Carlo simulation requires a large number of samplings, and this leads to significant runtime consumption.
      번역하기

      Uncertainty is ubiquitous in practical engineering and scientific research. The uncertainties in parameters can be treated as interval numbers. The prediction of upper and lower bounds of the response of a system including uncertain parameters is of i...

      Uncertainty is ubiquitous in practical engineering and scientific research. The uncertainties in parameters can be treated as interval numbers. The prediction of upper and lower bounds of the response of a system including uncertain parameters is of immense significance in uncertainty analysis. This paper aims to evaluate the upper and lower bounds of magnetic vector potentials in a linear magnetostatic field efficiently with uncertainbut- bounded parameters. The uncertain-but-bounded parameters are represented by interval notations. By performing Taylor series expansion on the magnetic vector potentials obtained from the equilibrium governing equation and by using the properties of interval mathematics, we can calculate the upper and lower bounds of the magnetic vector potentials of a linear magnetostatic field. In order to evaluate the accuracy and efficiency of the proposed method, two numerical examples are used. The results illustrate that the precision of the proposed method is acceptable for engineering applications, and the computation time of the proposed method is significantly less than that of the Monte Carlo simulation, which is the most widely used method related to uncertainties. The Monte Carlo simulation requires a large number of samplings, and this leads to significant runtime consumption.

      더보기

      목차 (Table of Contents)

      • 1. Introduction
      • 2. Interval Basics
      • 3. Taylor Series Expansion for Evaluating the Bounds of Magnetic Vector Potentials
      • 4. Numerical Examples
      • 5. Conclusions
      • 1. Introduction
      • 2. Interval Basics
      • 3. Taylor Series Expansion for Evaluating the Bounds of Magnetic Vector Potentials
      • 4. Numerical Examples
      • 5. Conclusions
      • References
      더보기

      참고문헌 (Reference)

      1 T. Namerikawa, 121 : 1080-, 2008

      2 X. Yao, 74 : 134460-, 2006

      3 N. Chen, 106 : 174-, 2017

      4 B. Xia, 38 : 146-, 2013

      5 C. Phatak, 104 : 253901-, 2010

      6 H. Igarashi, 34 : 2539-, 1998

      7 O. Biro, 32 : 651-, 1996

      8 K. Yamaguchi, 343 : 298-, 2004

      9 A. Abdallh, 324 : 1353-, 2012

      10 M. Enokizono, 28 : 1627-, 2008

      1 T. Namerikawa, 121 : 1080-, 2008

      2 X. Yao, 74 : 134460-, 2006

      3 N. Chen, 106 : 174-, 2017

      4 B. Xia, 38 : 146-, 2013

      5 C. Phatak, 104 : 253901-, 2010

      6 H. Igarashi, 34 : 2539-, 1998

      7 O. Biro, 32 : 651-, 1996

      8 K. Yamaguchi, 343 : 298-, 2004

      9 A. Abdallh, 324 : 1353-, 2012

      10 M. Enokizono, 28 : 1627-, 2008

      11 S. Hentschke, 11-, 1996

      12 H. M. Schepers, 21 : 65801-, 2010

      13 G. Stefanou, 198 : 1031-, 2009

      14 P. Haarsa, 89 : 699-, 2013

      15 N. You, 1224-1226, 2010

      16 G. S. Cheng, 64 : 3943-, 2016

      17 P. Dular, 34 : 3078-, 1998

      18 J. H. Coggon, 36 : 132-, 1971

      19 O. Biro, 25 : 3145-, 2002

      20 A. C. T. Iii, "Taylor series approximation of geometric shape variation for the Euler equations" 30 : 2163-, 2014

      21 A. Leon-Garcia, "Probability and random processes for electrical engineering" Addison-Wesley 12-23, 1989

      22 R. B. Kearfott, "Interval Computations: Introduction, Uses and Resources" 2 : 95-, 1996

      23 A. Guerine, "Dynamic response of wind turbine gear system with uncertain-but-bounded parameters using interval analysis method" 2017

      24 Y. Ben-Haim, "Convex models of uncertainty in applied mechanics" Elsevier 1-15, 1990

      25 L. Jaulin, "Applied Interval Analysis" Springer 32-45, 2001

      26 S. S. Rao, "Analysis of Uncertain Structural Systems Using Interval Analysis" 35 : 727-, 1997

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.67 0.44 0.47
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.38 0.3 0.385 0.08
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼