RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS KCI등재 SCIE

      A Newly Designed a TiO<sub>2</sub>-Loaded Spherical ZnS Nano/Micro-Composites for High Hydrogen Production from Methanol/Water Solution Photo-Splitting

      한글로보기

      https://www.riss.kr/link?id=A101040078

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      A new system using $TiO_2$ (nano-sized, band-gap 3.14 eV)-impregnated spherical ZnS (micro-sized, band-gap 2.73 eV) nano/micro-composites (Ti 0.001, 0.005, 0.01, and 0.05 mol %/ZnS) was developed to enhance the production of hydrogen from methanol/water splitting. The ZnS particles in a spherical morphology with a diameter of about 2-4 mm which can absorb around 455 nm were prepared by hydrothermal method. This material was used as a photocatalyst with loading by nano-sized $TiO_2$ (20-30 nm) for hydrogen production. The evolution of $H_2$ from methanol/water (1:1) photo splitting over the $TiO_2$/ZnS composite in the liquid system was enhanced, compared with that over pure $TiO_2$ and ZnS. In particular, 1.2 mmol of $H_2$ gas was produced after 12 h when 0.005 mol % $TiO_2$/ZnS nano/micro-composite was used. On the basis of cyclic voltammeter (CV) and UV-visible spectrums results, the high photoactivity was attributed to the larger band gap and the lower LUMO in the $TiO_2$/ZnS composite, due to the decreased recombination between the excited electrons and holes.
      번역하기

      A new system using $TiO_2$ (nano-sized, band-gap 3.14 eV)-impregnated spherical ZnS (micro-sized, band-gap 2.73 eV) nano/micro-composites (Ti 0.001, 0.005, 0.01, and 0.05 mol %/ZnS) was developed to enhance the production of hydrogen from methanol/wat...

      A new system using $TiO_2$ (nano-sized, band-gap 3.14 eV)-impregnated spherical ZnS (micro-sized, band-gap 2.73 eV) nano/micro-composites (Ti 0.001, 0.005, 0.01, and 0.05 mol %/ZnS) was developed to enhance the production of hydrogen from methanol/water splitting. The ZnS particles in a spherical morphology with a diameter of about 2-4 mm which can absorb around 455 nm were prepared by hydrothermal method. This material was used as a photocatalyst with loading by nano-sized $TiO_2$ (20-30 nm) for hydrogen production. The evolution of $H_2$ from methanol/water (1:1) photo splitting over the $TiO_2$/ZnS composite in the liquid system was enhanced, compared with that over pure $TiO_2$ and ZnS. In particular, 1.2 mmol of $H_2$ gas was produced after 12 h when 0.005 mol % $TiO_2$/ZnS nano/micro-composite was used. On the basis of cyclic voltammeter (CV) and UV-visible spectrums results, the high photoactivity was attributed to the larger band gap and the lower LUMO in the $TiO_2$/ZnS composite, due to the decreased recombination between the excited electrons and holes.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼