RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재후보

      B<sup>+</sup> 트리를 위한 벌크 로드 = On Bulk-Loading B<sup>+</sup>-trees

      한글로보기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, we propose a bulk-load algorithm for $B^+-trees$, the most widely used index structures in database systems. The main characteristic of our algorithm is to simultaneously process all the keys to be placed on each $B^+-trees$ page when accessing the page. This avoids the overhead for accessing the same page multiple times, which results from applying the $B^+-trees$ insertion algorithm repeatedly. For performance evaluation, we analyze our algorithm in terms of the number of disk accesses. The results show that the number of disk accesses excluding those in the redistribution process in identical to the number of $B^+-trees$ pages. Considering that the redistribution process is an unavoidable preprocessing step for bulk-loading, our algorithm requires just one disk access per $B^+-trees$ page, and therefore turns out to be optimal. We also present performance tendancy according to the changes of parameter values via simulation.
      번역하기

      In this paper, we propose a bulk-load algorithm for $B^+-trees$, the most widely used index structures in database systems. The main characteristic of our algorithm is to simultaneously process all the keys to be placed on each $B^+-trees$ page when a...

      In this paper, we propose a bulk-load algorithm for $B^+-trees$, the most widely used index structures in database systems. The main characteristic of our algorithm is to simultaneously process all the keys to be placed on each $B^+-trees$ page when accessing the page. This avoids the overhead for accessing the same page multiple times, which results from applying the $B^+-trees$ insertion algorithm repeatedly. For performance evaluation, we analyze our algorithm in terms of the number of disk accesses. The results show that the number of disk accesses excluding those in the redistribution process in identical to the number of $B^+-trees$ pages. Considering that the redistribution process is an unavoidable preprocessing step for bulk-loading, our algorithm requires just one disk access per $B^+-trees$ page, and therefore turns out to be optimal. We also present performance tendancy according to the changes of parameter values via simulation.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼