1 Walter, R. J., "Wnt signaling is boosted during intestinal regeneration by a CD44-positive feedback loop" 13 : 168-, 2022
2 Barachetti, L., "Use of four-layer porcine small intestinal submucosa alone as a scaffold for the treatment of deep corneal defects in dogs and cats: preliminary results" 186 : e28-, 2020
3 Clevers, H., "Tissue-engineering the intestine: the trials before the trials" 24 : 855-859, 2019
4 Martin, L. Y., "Tissue engineering for the treatment of short bowel syndrome in children" 83 : 249-257, 2018
5 Zhai, P., "The application of hyaluronic acid in bone regeneration" 151 : 1224-1239, 2020
6 Hares, M. F., "Stem cell-derived enteroid cultures as a tool for dissecting host-parasite interactions in the small intestinal epithelium" 43 : e12765-, 2021
7 Kesseli, S., "Small bowel transplantation" 99 : 103-116, 2019
8 Sato, T., "Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche" 459 : 262-265, 2009
9 Zhang, Y. G., "Salmonellainfected crypt-derived intestinal organoid culture system for hostbacterial interactions" 2 : e12147-, 2014
10 Qi, D., "Repair and regeneration of small intestine: a review of current engineering approaches" 240 : 119832-, 2020
1 Walter, R. J., "Wnt signaling is boosted during intestinal regeneration by a CD44-positive feedback loop" 13 : 168-, 2022
2 Barachetti, L., "Use of four-layer porcine small intestinal submucosa alone as a scaffold for the treatment of deep corneal defects in dogs and cats: preliminary results" 186 : e28-, 2020
3 Clevers, H., "Tissue-engineering the intestine: the trials before the trials" 24 : 855-859, 2019
4 Martin, L. Y., "Tissue engineering for the treatment of short bowel syndrome in children" 83 : 249-257, 2018
5 Zhai, P., "The application of hyaluronic acid in bone regeneration" 151 : 1224-1239, 2020
6 Hares, M. F., "Stem cell-derived enteroid cultures as a tool for dissecting host-parasite interactions in the small intestinal epithelium" 43 : e12765-, 2021
7 Kesseli, S., "Small bowel transplantation" 99 : 103-116, 2019
8 Sato, T., "Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche" 459 : 262-265, 2009
9 Zhang, Y. G., "Salmonellainfected crypt-derived intestinal organoid culture system for hostbacterial interactions" 2 : e12147-, 2014
10 Qi, D., "Repair and regeneration of small intestine: a review of current engineering approaches" 240 : 119832-, 2020
11 Bielawska, B., "Parenteral nutrition and intestinal failure" 9 : 466-, 2017
12 Dutta, D., "Organoid culture systems to study host-pathogen interactions" 48 : 15-22, 2017
13 Bein, A., "Microfluidic organ-on-a-chip models of human intestine" 5 : 659-668, 2018
14 Dubrovsky, G., "Mechanisms for intestinal regeneration" 30 : 424-429, 2018
15 Bitar, K. N., "Intestinal tissue engineering:current concepts and future vision of regenerative medicine in the gut" 24 : 7-19, 2012
16 Chen, Y., "Intestinal crypt organoid: isolation of intestinal stem cells, in vitro culture, and optical observation" 1576 : 215-228, 2019
17 Misra, S., "Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer" 6 : 201-, 2015
18 Burge, K., "In vitro apical-out enteroid model of necrotizing enterocolitis" (184) : 2022
19 Abatangelo, G., "Hyaluronic acid: redefining its role" 9 : 1743-, 2020
20 Riehl, T. E., "Hyaluronic acid promotes Lgr5+ stem cell proliferation and crypt fission through TLR4 and PGE2 transactivation of EGFR" 319 : G63-G73, 2020
21 Kobayashi, T., "Hyaluronan:metabolism and function" 10 : 1525-, 2020
22 Dicker, K. T., "Hyaluronan: a simple polysaccharide with diverse biological functions" 10 : 1558-1570, 2014
23 Nikolaev, M., "Homeostatic mini-intestines through scaffold-guided organoid morphogenesis" 585 : 574-578, 2020
24 Creff, J., "Fabrication of 3D scaffolds reproducing intestinal epithelium topography by highresolution 3D stereolithography" 221 : 119404-, 2019
25 Meran, L., "Engineering transplantable jejunal mucosal grafts using patient-derived organoids from children with intestinal failure" 26 : 1593-1601, 2020
26 Hemshekhar, M., "Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine" 86 : 917-928, 2016
27 Pironi, L., "ESPEN guidelines on chronic intestinal failure in adults" 35 : 247-307, 2016
28 Chen, Y., "Distinct effects of growth hormone and glutamine on activation of intestinal stem cells" 42 : 642-651, 2018
29 Ladd, M. R., "Development of intestinal scaffolds that mimic native mammalian intestinal tissue" 25 : 1225-1241, 2019
30 Chen, Y., "Deferoxamine preconditioning activated hypoxia-inducible factor-1α and MyD88-dependent Toll-like receptor 4 signaling in intestinal stem cells" 53 : 2349-2356, 2018
31 Hibi, T., "Current status of intestinal transplantation in East Asia" 25 : 165-168, 2020
32 Han, X., "Creating a more perfect union: modeling intestinal bacteria-epithelial interactions using organoids" 12 : 769-782, 2021
33 Beumer, J., "Cell fate specification and differentiation in the adult mammalian intestine" 22 : 39-53, 2021
34 Riehl, T. E., "CD44 and TLR4 mediate hyaluronic acid regulation of Lgr5+ stem cell proliferation, crypt fission, and intestinal growth in postnatal and adult mice" 309 : G874-G887, 2015
35 Gracz, A. D., "Brief report:CD24 and CD44 mark human intestinal epithelial cell populations with characteristics of active and facultative stem cells" 31 : 2024-2030, 2013
36 Youngsam Kim ; Seonmi Kang ; Sunhwa Nam ; Seongjin Yun ; Kangmoon Seo, "Application of porcine small intestinal submucosa (Vetrix BioSIS®) for recurrent corneal sequestrum in an American shorthair cat" 대한수의학회 60 (60): 229-232, 2020
37 Luu, L., "An open-format enteroid culture system for interrogation of interactions between Toxoplasma gondii and the intestinal epithelium" 9 : 300-, 2019
38 López-Ruiz, E., "Advances of hyaluronic acid in stem cell therapy and tissue engineering, including current clinical trials" 37 : 186-213, 2019
39 Wang, Y., "A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium" 128 : 44-55, 2017
40 Williamson, I. A., "A highthroughput organoid microinjection platform to study gastrointestinal microbiota and luminal physiology" 6 : 301-319, 2018
41 Leung, C. M., "A guide to the organ-on-a-chip" 2 : 33-, 2022
42 Antfolk, M., "A bioengineering perspective on modelling the intestinal epithelial physiology in vitro" 11 : 6244-, 2020
43 Costello, C. M., "3-D intestinal scaffolds for evaluating the therapeutic potential of probiotics" 11 : 2030-2039, 2014