The cullin-containing E3 ubiquitin ligases play an important role in regulating the abundance of key proteins involved in cellular processes such as cell cycle and cytokine signaling. They have multisubunit modular structures in which substrate recogn...
The cullin-containing E3 ubiquitin ligases play an important role in regulating the abundance of key proteins involved in cellular processes such as cell cycle and cytokine signaling. They have multisubunit modular structures in which substrate recognition and the catalysis of ubiquitination are carried out by distinct polypeptides. In a search for proteins involved in regulation of cullin-containing E3 ubiquitin ligases we immunopurified CUL4B-containing complex from HeLa cells and identified TIP120A as an associated protein by mass spectrometry. Immunoprecipitation of cullins revealed that all cullins tested specifically interacted with TIP120A. Reciprocal immunoaffinity purification of TIP120A confirmed the stable interaction of TIP120A with cullin family proteins. TIP120A formed a complex with CUL1 and Rbx1, but interfered with the binding of Skpl and F-box proteins to CUL1. TIP120A greatly reduced the ubiquitination of phosphorylated I kappa B alpha by SCF^(β-TrCP) ubiquitin ligase. These results suggest that TIP120A functions as a negative regulator of SCF E3 ubiquitin ligases and may modulate other cullin ligases in a similar fashion. In addition, we show that TIP120A binds to the unneddylated CUL1 but not the neddylated one. The association of TIP120A with CUL1 requires both the N-terminal stalk and the C-terminal globular domain of CUL1. TIP120A efficiently inhibits neddylation of CUL1 but does not affect substrate-independent ubiquitination by CUL1/Rbx1, implying that it blocks the access of Nedd8 to the conjugation site but does not interfere with the interaction of the E2 with Rbx1. Our data suggest that the association/dissociation of TIP120A coupled to neddylation/deneddylation of CUL1 may play an important role in assembly and disassembly of SCF ubiquitin ligases.