RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Gradient Boosting 기법을 활용한 다크넷 트래픽 탐지 및 분류 = Darknet Traffic Detection and Classification Using Gradient Boosting Techniques

      한글로보기

      https://www.riss.kr/link?id=A108109639

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      Darknet is based on the characteristics of anonymity and security, and this leads darknet to be continuously abused for various crimes and illegal activities. Therefore, it is very important to detect and classify darknet traffic to prevent the misuse and abuse of darknet. This work proposes a novel approach, which uses the Gradient Boosting techniques for darknet traffic detection and classification. XGBoost and LightGBM algorithm achieve detection accuracy of 99.99%, and classification accuracy of over 99%, which could get more than 3% higher detection accuracy and over 13% higher classification accuracy, compared to the previous research. In particular, LightGBM algorithm could detect and classify darknet traffic in a way that is superior to XGBoost by reducing the learning time by about 1.6 times and hyperparameter tuning time by more than 10 times.
      번역하기

      Darknet is based on the characteristics of anonymity and security, and this leads darknet to be continuously abused for various crimes and illegal activities. Therefore, it is very important to detect and classify darknet traffic to prevent the misuse...

      Darknet is based on the characteristics of anonymity and security, and this leads darknet to be continuously abused for various crimes and illegal activities. Therefore, it is very important to detect and classify darknet traffic to prevent the misuse and abuse of darknet. This work proposes a novel approach, which uses the Gradient Boosting techniques for darknet traffic detection and classification. XGBoost and LightGBM algorithm achieve detection accuracy of 99.99%, and classification accuracy of over 99%, which could get more than 3% higher detection accuracy and over 13% higher classification accuracy, compared to the previous research. In particular, LightGBM algorithm could detect and classify darknet traffic in a way that is superior to XGBoost by reducing the learning time by about 1.6 times and hyperparameter tuning time by more than 10 times.

      더보기

      참고문헌 (Reference)

      1 김지혜, "주성분 분석과 머신러닝 기법을 활용한 Tor 네트워크 웹사이트 핑거프린팅 연구" 국방보안연구소 3 (3): 7-44, 2021

      2 Github, "ipinfo/python"

      3 Tianqi Chen, "XGBoost: A Scalable Tree Boosting System" 785-794, 2016

      4 Ferguson, Paul, "What is a VPN?"

      5 TrendMicro, "What We Know About the Darkside Ransomware and the US Pipeline Attack"

      6 UNB(University of New Brunswick), "VPN-nonVPN dataset (ISCXVPN2016)"

      7 P. Gao, "VPN Traffic Classification Based on Payload Length Sequence" IEEE Computer Society 241-247, 2020

      8 Dingledine, "Tor: The second-generation onion router" Naval Research Lab Washington DC 2004

      9 UNB(University of New Brunswick), "Tor-nonTor dataset (ISCXTor2016)"

      10 Jessica A. Wood, "The Darknet: A Digital Copyright Revolution" 16 : 14-, 2010

      1 김지혜, "주성분 분석과 머신러닝 기법을 활용한 Tor 네트워크 웹사이트 핑거프린팅 연구" 국방보안연구소 3 (3): 7-44, 2021

      2 Github, "ipinfo/python"

      3 Tianqi Chen, "XGBoost: A Scalable Tree Boosting System" 785-794, 2016

      4 Ferguson, Paul, "What is a VPN?"

      5 TrendMicro, "What We Know About the Darkside Ransomware and the US Pipeline Attack"

      6 UNB(University of New Brunswick), "VPN-nonVPN dataset (ISCXVPN2016)"

      7 P. Gao, "VPN Traffic Classification Based on Payload Length Sequence" IEEE Computer Society 241-247, 2020

      8 Dingledine, "Tor: The second-generation onion router" Naval Research Lab Washington DC 2004

      9 UNB(University of New Brunswick), "Tor-nonTor dataset (ISCXTor2016)"

      10 Jessica A. Wood, "The Darknet: A Digital Copyright Revolution" 16 : 14-, 2010

      11 Shwartz-Ziv, Ravid, "Tabular data: Deep learning is not all you need" 81 : 84-90, 2021

      12 Nitesh V. Chawla, "SMOTE: synthetic minority over-sampling technique" 16 (16): 321-357, 2002

      13 LightGBM, "LightGBM Features"

      14 Towards Data Science, "How to choose between different Boosting Algorithms"

      15 VPNPROCLUB, "How To Use VPN For Dark Web"

      16 iTechHacks, "How To Use Deep/Dark Web On Your Android (A-Z Guide On Deep Web)"

      17 Machine Learning Mastery, "Gradient Boosting with Scikit-Learn, XGBoost, LightGBM, and CatBoost"

      18 Neha Gupta, "Encrypted Traffic Classi fication Using eXtreme Gradient Boosting Algorithm" Springer 1394 : 225-232, 2019

      19 Iliadis, "Darknet Traffic Classification using Machine Learning Techniques" 1-4, 2021

      20 M. B. Sarwar, "DarkDetect: Darknet Traffic Detection and Categorization Using Modified Convolution-Long Short-Term Memory" 9 : 113705-113713, 2021

      21 Arash Habibi Lashkari, "DIDarknet : A Contemporary Approach to Detect and Characterize the Darknet Traffic using Deep Image Learning" ACM 1-13, 2020

      22 Florian Platzer, "Critical traffic analysis on the tor network" 1-10, 2020

      23 Lashkari, A. H., "Characterization of tor traffic using time based features" 2 : 253-262, 2017

      24 Draper-Gil, G., "Characterization of encrypted and vpn traffic using time-related" 2 : 407-414, 2016

      25 Github, "CICFlowMeter"

      26 UNB(University of New Brunswick), "CIC-Darknet2020"

      27 Cyberint, "Avaddon Ransomware Attack Hits AXA Philippines, Malaysia, Thailand and Hong Kong"

      28 Boannews, "A large-scale of login attempts happened by abusing the leaked Kakaotalk account"

      29 Li, Cheng, "A gentle introduction to gradient boosting"

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.41 0.41 0.43
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.45 0.4 0.508 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼