RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      테셀레이션을 통한 패러메트릭 패턴의 생성적 특성 연구 = A Study on the Generative Characteristic of Parametric Patterns developed by Tessellation

      한글로보기

      https://www.riss.kr/link?id=A105942593

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The purpose of this study is to deduce the principle of parametric design pattern creation andresearch into its characteristics in order to clearly establish the principles of design patterncreation. The study analyzes tessellation, a way of pattern creation by dividing a plane into partsand tilting them, by investigating the inherent generative characteristic of tessellation and thevalidity as a principle of generation, through exploring it extensively using cases of nature andart to which tessellation has been applied. By studying the underlying laws of tessellationpattern generation in the nature world, the fundamental laws of pattern creation such asself-similarity, Voronoi tessellation, Gilbert tessellation, fractal tessellation and from the toolingprocess of tessellation, the generative properties such as self-similarity, temporality,repeatability, transmutability, expansibility, contractibility, irregularity and extensibility werederived. Four principles of generative pattern creation, ‘progressive tessellation’, ‘recursivetessellation’, ‘flexible tessellation’ and ‘irregular tessellation’ were defined using the derivedgenerative properties of tessellation in a more expansive sense. In order to apply each principleto a parametric design pattern, grasshopper, a generative algorithm-based design tool, wasused. By using this tool, the generation principle algorithm was created through substituting thegenerative principle that explains the logic behind the generation with a parameter value. Thesealgorithms were used to create actual patterns. This allowed the finding of each generationprinciple of the parametric pattern through tessellation having its own generating direction andthe process of creating divided patterns through natural generation laws and intentionaltransformations was confirmed. Through this process, it was found that unlike general tesselationpatterns that only repeat basic divided plane parts and create regular patterns despite theexpanded range of application, the patterns that were created by applying the generationprinciple inherent in each part of the divided planes have the possibility of generating irregularpatterns by instantly reflecting the parameter change of the applied generation principlealgorithm to each part.
      번역하기

      The purpose of this study is to deduce the principle of parametric design pattern creation andresearch into its characteristics in order to clearly establish the principles of design patterncreation. The study analyzes tessellation, a way of pattern c...

      The purpose of this study is to deduce the principle of parametric design pattern creation andresearch into its characteristics in order to clearly establish the principles of design patterncreation. The study analyzes tessellation, a way of pattern creation by dividing a plane into partsand tilting them, by investigating the inherent generative characteristic of tessellation and thevalidity as a principle of generation, through exploring it extensively using cases of nature andart to which tessellation has been applied. By studying the underlying laws of tessellationpattern generation in the nature world, the fundamental laws of pattern creation such asself-similarity, Voronoi tessellation, Gilbert tessellation, fractal tessellation and from the toolingprocess of tessellation, the generative properties such as self-similarity, temporality,repeatability, transmutability, expansibility, contractibility, irregularity and extensibility werederived. Four principles of generative pattern creation, ‘progressive tessellation’, ‘recursivetessellation’, ‘flexible tessellation’ and ‘irregular tessellation’ were defined using the derivedgenerative properties of tessellation in a more expansive sense. In order to apply each principleto a parametric design pattern, grasshopper, a generative algorithm-based design tool, wasused. By using this tool, the generation principle algorithm was created through substituting thegenerative principle that explains the logic behind the generation with a parameter value. Thesealgorithms were used to create actual patterns. This allowed the finding of each generationprinciple of the parametric pattern through tessellation having its own generating direction andthe process of creating divided patterns through natural generation laws and intentionaltransformations was confirmed. Through this process, it was found that unlike general tesselationpatterns that only repeat basic divided plane parts and create regular patterns despite theexpanded range of application, the patterns that were created by applying the generationprinciple inherent in each part of the divided planes have the possibility of generating irregularpatterns by instantly reflecting the parameter change of the applied generation principlealgorithm to each part.

      더보기

      국문 초록 (Abstract)

      본 연구의 목적은 기본적 면 분할 패턴 생성 원리인 테셀레이션으로부터 패러메트릭 디자인 패턴 생성원리를도출하고 그 특성을 연구하여 패러메트릭 디자인 패턴 생성원리를 정립하는 것이다. 평면을 분할하여 전체를 구성하는 패턴 생성 방법인 테셀레이션이 적용된 자연, 예술의 사례를 통해 확장적으로 테셀레이션을 해석하여 테셀레이션에 내재된 생성적 속성과 생성 원리로서의 유효성을 탐구함으로써 자연계 테셀레이션 패턴 생성의 근원적 법칙인 자기유사성, 보로노이 테셀레이션, 길버트 테셀레이션, 프랙탈 테셀레이션과 테셀레이션의 도구화과정으로부터 자기 유사성, 시간성, 반복성, 변형성, 팽창성, 수축성, 불규칙성, 확장성 등의 생성적 속성을 도출하였고, 확장적 의미의 테셀레이션에서 도출된 생성적 속성으로부터 ‘점진적 테셀레이션’, ‘재귀적 테셀레이션’,‘신축적 테셀레이션’, ‘불규칙적 테셀레이션’의 네 가지 생성적 패턴 생성 원리를 정의하였다. 각 생성 원리를패러메트릭 디자인 패턴에 적용하기 위해 생성적 알고리즘 기반 디자인 툴인 그래스호퍼를 사용해 생성 원리를구성하는 생성적 속성을 패러미터 값으로 치환해 생성 원리 알고리즘을 만들고, 이러한 알고리즘으로 실제적 예시의 패턴을 제작해보았다. 테셀레이션을 통한 패러메트릭 패턴의 생성원리가 최종적으로 각 원리마다 고유한생성 방향성을 지니고 자연적 생성 법칙과 의도적 변형에 의해 면 분할 패턴을 생성하는 과정을 확인할 수 있었다. 이러한 과정에서 일반적 테셀레이션 패턴이 그 적용 범위를 확장해도 기초적인 면 분할이 반복되는 정형적인 패턴인 것에 반해 면 분할된 각 개체가 생성적 속성을 내제한 생성원리를 적용하여 만들어진 패턴은 적용된 생성 원리 알고리즘의 패러미터 변화를 즉각적으로 개체에 반영함으로써 생성적 방식으로 비정형 패턴을 생성시킬 수 있는 가능성을 내포하고 있음을 확인할 수 있었다.
      번역하기

      본 연구의 목적은 기본적 면 분할 패턴 생성 원리인 테셀레이션으로부터 패러메트릭 디자인 패턴 생성원리를도출하고 그 특성을 연구하여 패러메트릭 디자인 패턴 생성원리를 정립하는 것...

      본 연구의 목적은 기본적 면 분할 패턴 생성 원리인 테셀레이션으로부터 패러메트릭 디자인 패턴 생성원리를도출하고 그 특성을 연구하여 패러메트릭 디자인 패턴 생성원리를 정립하는 것이다. 평면을 분할하여 전체를 구성하는 패턴 생성 방법인 테셀레이션이 적용된 자연, 예술의 사례를 통해 확장적으로 테셀레이션을 해석하여 테셀레이션에 내재된 생성적 속성과 생성 원리로서의 유효성을 탐구함으로써 자연계 테셀레이션 패턴 생성의 근원적 법칙인 자기유사성, 보로노이 테셀레이션, 길버트 테셀레이션, 프랙탈 테셀레이션과 테셀레이션의 도구화과정으로부터 자기 유사성, 시간성, 반복성, 변형성, 팽창성, 수축성, 불규칙성, 확장성 등의 생성적 속성을 도출하였고, 확장적 의미의 테셀레이션에서 도출된 생성적 속성으로부터 ‘점진적 테셀레이션’, ‘재귀적 테셀레이션’,‘신축적 테셀레이션’, ‘불규칙적 테셀레이션’의 네 가지 생성적 패턴 생성 원리를 정의하였다. 각 생성 원리를패러메트릭 디자인 패턴에 적용하기 위해 생성적 알고리즘 기반 디자인 툴인 그래스호퍼를 사용해 생성 원리를구성하는 생성적 속성을 패러미터 값으로 치환해 생성 원리 알고리즘을 만들고, 이러한 알고리즘으로 실제적 예시의 패턴을 제작해보았다. 테셀레이션을 통한 패러메트릭 패턴의 생성원리가 최종적으로 각 원리마다 고유한생성 방향성을 지니고 자연적 생성 법칙과 의도적 변형에 의해 면 분할 패턴을 생성하는 과정을 확인할 수 있었다. 이러한 과정에서 일반적 테셀레이션 패턴이 그 적용 범위를 확장해도 기초적인 면 분할이 반복되는 정형적인 패턴인 것에 반해 면 분할된 각 개체가 생성적 속성을 내제한 생성원리를 적용하여 만들어진 패턴은 적용된 생성 원리 알고리즘의 패러미터 변화를 즉각적으로 개체에 반영함으로써 생성적 방식으로 비정형 패턴을 생성시킬 수 있는 가능성을 내포하고 있음을 확인할 수 있었다.

      더보기

      참고문헌 (Reference)

      1 박흥식, "파라메트릭기반 비정형 형태 생성방법에 관한 기초연구" 28 (28): 2008

      2 임현숙, "테셀레이션(Tessellation)을 응용한 패턴 디자인 연구 : 에셔(M.C.Escher)의 작품을 중심으로" 梨花女子大學校 디자인大學院 1999

      3 심복기, "이슬람 건축 장식의 특징에 관한 연구" 대한건축학회 29 (29): 189-196, 2013

      4 김원갑, "생물학적 패턴의 건축적 적용에 관한 연구" 한국실내디자인학회 21 (21): 35-45, 2012

      5 강화영, "사물의 변형에 의한 패턴구조 분석 -M.C. 에셔의 작품을 중심으로-" 한국디자인트렌드학회 (25) : 237-246, 2009

      6 이진영, "디지털 알고리즘을 활용한 건축외피의 기하학 패턴 제어방식에 관한 연구" 아주대학교 대학원 2013

      7 "대한수학회 수학백과 테셀레이션 항목"

      8 "https://en.wikipedia.org/wiki/Gilbert_tessellation"

      9 "https://en.wikipedia.org/wiki/Fractal"

      10 "https://en.wikipedia.org/wiki/Algorithm"

      1 박흥식, "파라메트릭기반 비정형 형태 생성방법에 관한 기초연구" 28 (28): 2008

      2 임현숙, "테셀레이션(Tessellation)을 응용한 패턴 디자인 연구 : 에셔(M.C.Escher)의 작품을 중심으로" 梨花女子大學校 디자인大學院 1999

      3 심복기, "이슬람 건축 장식의 특징에 관한 연구" 대한건축학회 29 (29): 189-196, 2013

      4 김원갑, "생물학적 패턴의 건축적 적용에 관한 연구" 한국실내디자인학회 21 (21): 35-45, 2012

      5 강화영, "사물의 변형에 의한 패턴구조 분석 -M.C. 에셔의 작품을 중심으로-" 한국디자인트렌드학회 (25) : 237-246, 2009

      6 이진영, "디지털 알고리즘을 활용한 건축외피의 기하학 패턴 제어방식에 관한 연구" 아주대학교 대학원 2013

      7 "대한수학회 수학백과 테셀레이션 항목"

      8 "https://en.wikipedia.org/wiki/Gilbert_tessellation"

      9 "https://en.wikipedia.org/wiki/Fractal"

      10 "https://en.wikipedia.org/wiki/Algorithm"

      11 B. Gruembaum, "Tilings and Patterns" W. H. Freeman 23-, 1989

      12 J. R. Hook, "Solid State Physics" 1991

      13 Hardi K. Abdullah, "Parametric design procedure: an approach to‘Generative Form’and exploring the design instances in architecture" Newcastle University 2013

      14 강화영, "M.C. 에셔의 데페이즈망 요소에 의한 테셀레이션 패턴 연구" 단국대학교 대학원 2008

      15 STIERLIN Henri, "Islam, Italy, Taschen"

      16 Amit Kumar Tyagi, "Generalized Voronoi Tessellation as a Model of Two-dimensional Cell Tissue Dynamics" 2010

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-02-09 학술지명변경 외국어명 : Bulletin of Korean Society of Basic Design & Art -> Journal of Basic Design & Art KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.33 0.33 0.34
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.34 0.34 0.512 0.08
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼