RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      동의어 치환을 이용한 심층 신경망 모델의 테스트 데이터 생성

      한글로보기

      https://www.riss.kr/link?id=A106254541

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      최근 이미지 처리 응용을 위한 심층 신경망 모델의 효과적 테스팅을 위해 해당 모델이 올바르게 예측하지 못하는 코너 케이스에 해당하는 행동을 보이는 데이터를 자동 생성하는 연구가 활발히 진행되고 있다. 본 논문은 문장 분류 심층 신경망 모델에 기반하고 있는 버그 담당자 자동 배정 시스템의 테스트를 위해 입력 데이터인 버그 리포트의 내용에서 임의의 단어를 선택해 동의어로 변형하는 테스트 데이터 생성기법을 제안한다. 그리고 제안하는 테스트 데이터 생성 기법을 사용한 경우와 기존의 차이 유발 테스트 데이터 생성 기법을 사용했을 경우를 다양한 뉴런 기반 커버리지를 중심으로 비교 평가한다.
      번역하기

      최근 이미지 처리 응용을 위한 심층 신경망 모델의 효과적 테스팅을 위해 해당 모델이 올바르게 예측하지 못하는 코너 케이스에 해당하는 행동을 보이는 데이터를 자동 생성하는 연구가 활...

      최근 이미지 처리 응용을 위한 심층 신경망 모델의 효과적 테스팅을 위해 해당 모델이 올바르게 예측하지 못하는 코너 케이스에 해당하는 행동을 보이는 데이터를 자동 생성하는 연구가 활발히 진행되고 있다. 본 논문은 문장 분류 심층 신경망 모델에 기반하고 있는 버그 담당자 자동 배정 시스템의 테스트를 위해 입력 데이터인 버그 리포트의 내용에서 임의의 단어를 선택해 동의어로 변형하는 테스트 데이터 생성기법을 제안한다. 그리고 제안하는 테스트 데이터 생성 기법을 사용한 경우와 기존의 차이 유발 테스트 데이터 생성 기법을 사용했을 경우를 다양한 뉴런 기반 커버리지를 중심으로 비교 평가한다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Recently, in order to effectively test deep neural network model for image processing application, researches have actively conducted to automatically generate data in corner-case that is not correctly predicted by the model. This paper proposes test data generation method that selects arbitrary words from input of system and transforms them into synonyms in order to test the bug reporter automatic assignment system based on sentence classification deep neural network model. In addition, we compare and evaluate the case of using proposed test data generation and the case of using existing difference-inducing test data generations based on various neuron coverages.
      번역하기

      Recently, in order to effectively test deep neural network model for image processing application, researches have actively conducted to automatically generate data in corner-case that is not correctly predicted by the model. This paper proposes test ...

      Recently, in order to effectively test deep neural network model for image processing application, researches have actively conducted to automatically generate data in corner-case that is not correctly predicted by the model. This paper proposes test data generation method that selects arbitrary words from input of system and transforms them into synonyms in order to test the bug reporter automatic assignment system based on sentence classification deep neural network model. In addition, we compare and evaluate the case of using proposed test data generation and the case of using existing difference-inducing test data generations based on various neuron coverages.

      더보기

      목차 (Table of Contents)

      • 요약
      • Abstract
      • 1. 서론
      • 2. 관련 연구
      • 3. 배경 지식
      • 요약
      • Abstract
      • 1. 서론
      • 2. 관련 연구
      • 3. 배경 지식
      • 4. 접근 방법
      • 5. 평가 방법 및 실험 결과
      • 6. 결론
      • 참고문헌
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼