RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      독립표본에서 두 모비율의 차이에 대한 가중 POLYA 사후분포 신뢰구간 = The Weighted Polya Posterior Confidence Interval For the Difference Between Two Independent Proportions

      한글로보기

      https://www.riss.kr/link?id=A105149972

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The Wald confidence interval has been considered as a standard method for the difference of proportions. However, the erratic behavior of the coverage probability of the Wald confidence interval is recognized in various literatures. Various alternatives have been proposed. Among them, Agresti-Caffo confidence interval has gained the reputation because of its simplicity and fairly good performance in terms of coverage probability. It is known however, that the Agresti-Caffo confidence interval is conservative. In this note, a confidence interval is developed using the weighted Polya posterior which was employed to obtain a confidence interval for the binomial proportion in Lee(2005). The resulting confidence interval is simple and effective in various respects such as the closeness of the average coverage probability to the nominal confidence level, the average expected length and the mean absolute error of the coverage probability. Practically it can be used for the interval estimation of the difference of proportions for any sample sizes and parameter values.
      번역하기

      The Wald confidence interval has been considered as a standard method for the difference of proportions. However, the erratic behavior of the coverage probability of the Wald confidence interval is recognized in various literatures. Various alternativ...

      The Wald confidence interval has been considered as a standard method for the difference of proportions. However, the erratic behavior of the coverage probability of the Wald confidence interval is recognized in various literatures. Various alternatives have been proposed. Among them, Agresti-Caffo confidence interval has gained the reputation because of its simplicity and fairly good performance in terms of coverage probability. It is known however, that the Agresti-Caffo confidence interval is conservative. In this note, a confidence interval is developed using the weighted Polya posterior which was employed to obtain a confidence interval for the binomial proportion in Lee(2005). The resulting confidence interval is simple and effective in various respects such as the closeness of the average coverage probability to the nominal confidence level, the average expected length and the mean absolute error of the coverage probability. Practically it can be used for the interval estimation of the difference of proportions for any sample sizes and parameter values.

      더보기

      참고문헌 (Reference)

      1 이승천, "이항 비율의 가중 Polya posterior 구간추정" 한국통계학회 18 (18): 607-615, 2005

      2 정형철, "모비율 차이의 신뢰구간들에 대한 비교연구" 한국통계학회 16 (16): 16-393, 2003

      3 Newcombe, R, "Two-sided con¯dence intervals for the single proportion: Comparison of seven methods" (17) : 857-872, 1998

      4 Chan, I. S. F, "Test-based exact con¯dence intervals for the difference of two binomial proportions" (55) : 1202-1209, 1999

      5 Santner, T. J, "Small-sample confidence intervals for p1-p2 and p1/p2 in 2x2 contingency tables" (17) : 873-890, 1980

      6 Agresti, A, "Simple and effective con¯dence intervals for proportions and differences of proportions result from adding two successes and two failures" (54) : 280-288, 2000

      7 Wilson, E. B, "Probable inference, the law of succession and statistical inference" (22) : 209-212, 1927

      8 Anbar, D., "On estimating the di®erence between two probabilities with special reference to clinical trials" (39) : 257-262, 1983

      9 Meeden, G. D, "Interval estimators for the population mean for skewed distributions with a small sample size" (26) : 81-96, 1999

      10 Newcombe, R, "Interval estimation for the difference between independent proportions: Comparison of eleven methods" (17) : 873-890, 1998

      1 이승천, "이항 비율의 가중 Polya posterior 구간추정" 한국통계학회 18 (18): 607-615, 2005

      2 정형철, "모비율 차이의 신뢰구간들에 대한 비교연구" 한국통계학회 16 (16): 16-393, 2003

      3 Newcombe, R, "Two-sided con¯dence intervals for the single proportion: Comparison of seven methods" (17) : 857-872, 1998

      4 Chan, I. S. F, "Test-based exact con¯dence intervals for the difference of two binomial proportions" (55) : 1202-1209, 1999

      5 Santner, T. J, "Small-sample confidence intervals for p1-p2 and p1/p2 in 2x2 contingency tables" (17) : 873-890, 1980

      6 Agresti, A, "Simple and effective con¯dence intervals for proportions and differences of proportions result from adding two successes and two failures" (54) : 280-288, 2000

      7 Wilson, E. B, "Probable inference, the law of succession and statistical inference" (22) : 209-212, 1927

      8 Anbar, D., "On estimating the di®erence between two probabilities with special reference to clinical trials" (39) : 257-262, 1983

      9 Meeden, G. D, "Interval estimators for the population mean for skewed distributions with a small sample size" (26) : 81-96, 1999

      10 Newcombe, R, "Interval estimation for the difference between independent proportions: Comparison of eleven methods" (17) : 873-890, 1998

      11 Brown, L. D, "Interval estimation for a binomial proportion" (16) : 101-133, 2001

      12 Brown, L. D, "Con¯dence intervals for a binomial proportion and asymptotic expansions" (30) : 160-201, 2002

      13 Mee, R, "Con¯dence bounds for the difference between two probabilities" (40) : 1175-1176, 1984

      14 Vollet, S. E, "Confidence intervals for a binomial proportion" (12) : 809-824, 1993

      15 Blyth, C. R, "Binomial con¯dence intervals" (78) : 108-116, 1983

      16 Ghosh, M, "Bayesian methods for ¯nite population sampling" Chapman & Hall, London 1998

      17 Beal, S. L., "Asymptotic con¯dence intervals for the difference between two binomial parameters for use with small samples" (43) : 941-950, 1987

      18 Agresti, A, "Approximation is better than "exact" for interval estimation of binomial proportions" (52) : 119-126, 1998

      19 Feller, W, "An introduction of probability theory and its applications vol.1" Wiley, New York 1968

      20 Ghosh, B. K, "A comparison of some approximate con¯dence intervals for the binomial parameter" (74) : 894-900, 1979

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2000-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.38 0.38 0.38
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.35 0.34 0.565 0.17
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼