<P><B>Abstract</B></P> <P>In this work, a methanol steam reforming (MSR) reactor was operated using an indirect heating method. A thermal circuit was constructed between the MSR reactor and the electrical heater to suppl...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107728970
2018
-
SCOPUS,SCIE
학술저널
3655-3663(9쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P><B>Abstract</B></P> <P>In this work, a methanol steam reforming (MSR) reactor was operated using an indirect heating method. A thermal circuit was constructed between the MSR reactor and the electrical heater to suppl...
<P><B>Abstract</B></P> <P>In this work, a methanol steam reforming (MSR) reactor was operated using an indirect heating method. A thermal circuit was constructed between the MSR reactor and the electrical heater to supply the heat required for the endothermic reaction, and deionized water was used as the heat transfer medium (HTM). The MSR reactors featured a shell-and-tube type design to operate at high pressures. A Cu/Zn catalyst was installed on the tube side, and HTM was supplied to the shell side. To improve the heat transfer performance, the heat transfer area between the shell and tube was increased from 598 to 1117 cm<SUP>2</SUP>. Because the MSR reactor had a sufficient heat exchange area corresponding to the catalytic reaction rate, the heat exchange area had little effect on methanol conversion. However, the heat exchange area had a greater effect on the performance because the operating temperature of reactor was lower. Under the same operating temperature conditions, the MSR reactor operated under the indirect heating method showed relatively higher methanol conversion than the MSR reactor operated in an electric furnace because of the effective heat transfer by the latent heat of saturated steam. The MSR reactor based on the indirect heating method was continuously operated at 250 °C for 72 h to verify characteristic start-up and operation. The results showed that the MSR reactor could be operated at a constant temperature; however, low methanol conversion at low operating temperatures led to slow catalyst degradation. In addition, the MSR reactor required more than 2 h for initial start-up and for restart after emergency shutdown because the HTM needed to be evaporated and pressurized to the target pressure.</P> <P><B>Highlights</B></P> <P> <UL> <LI> The methanol steam reforming (MSR) reactor featured a shell-and-tube type design. </LI> <LI> The MSR reactor was operated between 250 and 280 °C by indirect heating method. </LI> <LI> The saturated steam used as the heat transfer medium supplied heat to MSR reactor. </LI> <LI> The MSR reactor operated under the indirect heating method showed relatively higher methanol conversion. </LI> <LI> The MSR reactor based on the indirect heating method was continuously operated at 250 °C for 72 h. </LI> </UL> </P>