RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      Analysis on Delta-Vs to Maintain Extremely Low Altitude on the Moon and Its Application to CubeSat Mission

      한글로보기

      https://www.riss.kr/link?id=A106352464

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper analyzes delta-Vs to maintain an extremely low altitude on the Moon and investigates the possibilities of performing a CubeSat mission. To formulate the station-keeping (SK) problem at an extremely low altitude, current work has utilized real-flight performance proven software, the Systems Tool Kit Astrogator by Analytical Graphics Inc. With a high-fidelity force model, properties of SK maneuver delta-Vs to maintain an extremely low altitude are successfully derived with respect to different sets of reference orbits; of different altitudes as well as deadband limits. The effect of the degree and order selection of lunar gravitational harmonics on the overall SK maneuver strategy is also analyzed. Based on the derived SK maneuver delta-V costs, the possibilities of performing a CubeSat mission are analyzed with the expected mission lifetime by applying the current flight-proven miniaturized propulsion system performances. Moreover, the lunar surface coverage as well as the orbital characteristics of a candidate reference orbit are discussed. As a result, it is concluded that an approximately 15-kg class CubeSat could maintain an orbit (30–50 km reference altitude having ±10 km deadband limits) around the Moon for 1–6 months and provide almost full coverage of the lunar surface.
      번역하기

      This paper analyzes delta-Vs to maintain an extremely low altitude on the Moon and investigates the possibilities of performing a CubeSat mission. To formulate the station-keeping (SK) problem at an extremely low altitude, current work has utilized re...

      This paper analyzes delta-Vs to maintain an extremely low altitude on the Moon and investigates the possibilities of performing a CubeSat mission. To formulate the station-keeping (SK) problem at an extremely low altitude, current work has utilized real-flight performance proven software, the Systems Tool Kit Astrogator by Analytical Graphics Inc. With a high-fidelity force model, properties of SK maneuver delta-Vs to maintain an extremely low altitude are successfully derived with respect to different sets of reference orbits; of different altitudes as well as deadband limits. The effect of the degree and order selection of lunar gravitational harmonics on the overall SK maneuver strategy is also analyzed. Based on the derived SK maneuver delta-V costs, the possibilities of performing a CubeSat mission are analyzed with the expected mission lifetime by applying the current flight-proven miniaturized propulsion system performances. Moreover, the lunar surface coverage as well as the orbital characteristics of a candidate reference orbit are discussed. As a result, it is concluded that an approximately 15-kg class CubeSat could maintain an orbit (30–50 km reference altitude having ±10 km deadband limits) around the Moon for 1–6 months and provide almost full coverage of the lunar surface.

      더보기

      참고문헌 (Reference)

      1 최수진, "지구-달 전이궤적 및 임무 궤도에서 궤도선과 지상국의 가시성 분석에 관한 연구" 한국항공우주학회 44 (44): 218-227, 2016

      2 최수진, "Variable Coast를 이용하는 3.5 지구-달 위상전이궤적에서 SEM 각도에 따른 임무설계 및 해석" 한국항공우주학회 46 (46): 68-77, 2018

      3 "USGS Astrogeology Science Center"

      4 S. Sasaki, "The SELENE mission: Goals and status" Elsevier BV 31 (31): 2335-2340, 2003

      5 AGI, "Systems Tool Kit (STK) help system"

      6 Beckman M, "Stationkeeping for the lunar reconnaissance orbiter" 2007

      7 Carrico J, "Software architecture and use of satellite tool kit’s Astrogator module for liberation point orbit mission" 2002

      8 Song YJ, "Preliminary design of LUDOLP: the flight dynamics subsystem for the Korea Pathfinder Lunar Orbiter mission" 2016

      9 Kim YR, "Orbit determination simulation for Korea pathfinder lunar orbiter using sequential estimation approach" 2019

      10 Kim YR, "Orbit determination requirement and performance analysis for Korea pathfinder lunar orbiter mission" 2016

      1 최수진, "지구-달 전이궤적 및 임무 궤도에서 궤도선과 지상국의 가시성 분석에 관한 연구" 한국항공우주학회 44 (44): 218-227, 2016

      2 최수진, "Variable Coast를 이용하는 3.5 지구-달 위상전이궤적에서 SEM 각도에 따른 임무설계 및 해석" 한국항공우주학회 46 (46): 68-77, 2018

      3 "USGS Astrogeology Science Center"

      4 S. Sasaki, "The SELENE mission: Goals and status" Elsevier BV 31 (31): 2335-2340, 2003

      5 AGI, "Systems Tool Kit (STK) help system"

      6 Beckman M, "Stationkeeping for the lunar reconnaissance orbiter" 2007

      7 Carrico J, "Software architecture and use of satellite tool kit’s Astrogator module for liberation point orbit mission" 2002

      8 Song YJ, "Preliminary design of LUDOLP: the flight dynamics subsystem for the Korea Pathfinder Lunar Orbiter mission" 2016

      9 Kim YR, "Orbit determination simulation for Korea pathfinder lunar orbiter using sequential estimation approach" 2019

      10 Kim YR, "Orbit determination requirement and performance analysis for Korea pathfinder lunar orbiter mission" 2016

      11 Kim YR, "Orbit determination and prediction simulation of KPLO mission orbit" 2018

      12 김영록, "Observational Arc-Length Effect on Orbit Determination for KPLO Using a Sequential Estimation Technique" 한국우주과학회 35 (35): 295-308, 2018

      13 NASA, "National Aeronautics and Space Administration"

      14 Mesarch M, "Maneuver operations results from the Lunar Reconnaissance Orbiter (LRO) mission" 2010

      15 Lozier D, "Lunar prospector mission design and trajectory support" 1998

      16 Kim YR, "Lunar orbiter’s orbit determination and prediction performance analysis using LRO tracking data" 2017

      17 Bae J, "Lunar orbit insertion analysis with respect to position and velocity error of Korea pathfinder lunar orbiter" 2016

      18 JPL, "Jet Propulsion Laboratory"

      19 David E. Smith, "Initial observations from the Lunar Orbiter Laser Altimeter (LOLA)" American Geophysical Union (AGU) 37 (37): 2010

      20 Bae J, "Initial dispersion analysis and midcourse trajectory correction maneuver of lunar orbiter" 2016

      21 Kim YR, "Influence of the choice of lunar gravity model on orbit determination for lunar orbiters" 5145419-, 2018

      22 Klesh AT, "INSPIRE: Interplanetary NanoSpacecraft Pathfinder in relevant environment" 2013

      23 송영주, "Flight Dynamics and Navigation for Planetary Missions in Korea: Past Efforts, Recent Status, and Future Preparations" 한국우주과학회 35 (35): 119-131, 2018

      24 Kim YR, "Effect of process noise on lunar orbiter orbit determination using LRO tracking data" 2017

      25 Kim YR, "Effect of measurement acquisition condition on lunar orbiter orbit determination" 2017

      26 Kim YR, "Effect of dynamic process noise on lunar orbiter orbit determination using sequential estimation technique" 2017

      27 송영주, "Early Phase Contingency Trajectory Design for the Failure of the First Lunar Orbit Insertion Maneuver: Direct Recovery Options" 한국우주과학회 34 (34): 331-341, 2017

      28 Franco Perez, "DustCube, a nanosatellite mission to binary asteroid 65803 Didymos as part of the ESA AIM mission" Elsevier BV 62 (62): 3335-3356, 2018

      29 이은지, "Development, Demonstration and Validation of the Deep Space Orbit Determination Software Using Lunar Prospector Tracking Data" 한국우주과학회 34 (34): 213-223, 2017

      30 Kim YR, "Development of deep space navigation system for korea pathfinder lunar orbiter" 2016

      31 Song YJ, "Design philosophy and operation concept of flight dynamics subsystem for the Korea pathfinder lunar orbiter mission" 2017

      32 Patrick Bambach, "DISCUS – The Deep Interior Scanning CubeSat mission to a rubble pile near-Earth asteroid" Elsevier BV 62 (62): 3357-3368, 2018

      33 Alkalai L, "CubeSats and small satellites as a vehicle for space innovation and exploration of space beyond Earth orbit" 2018

      34 VACCO, "CubeSat propulsion system"

      35 배종희, "Burn Delay Analysis of the Lunar Orbit Insertion for Korea Pathfinder Lunar Orbiter" 한국우주과학회 34 (34): 281-287, 2017

      36 Bae J, "Analysis of the first LOI maneuver with respect to the pointing uncertainty" 2017

      37 Bae J, "Analysis of phasing-loop transfer trajectory according to the position uncertainty of Korea pathfinder lunar orbiter" 2017

      38 김영광, "A Deep Space Orbit Determination Software: Overview and Event Prediction Capability" 한국우주과학회 34 (34): 139-151, 2017

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-05-12 학술지명변경 외국어명 : 미등록 -> Journal of Astronomy and Space Sciences KCI등재
      2010-06-10 학술지명변경 한글명 : 한국우주과학회지 -> Journal of Astronomy and Space Sciences KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.18 0.18 0.18
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.15 0.15 0.28 0.07
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼