RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재후보

      Industry Applicable Future Texturing Process for Diamond wire sawed Multi-crystalline Silicon Solar Cells: A review

      한글로보기

      https://www.riss.kr/link?id=A105233430

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      Current major photovoltaic (PV) market share (> 60%) is being occupied by the multicrystalline (mc)-silicon solar cells despite of low efficiency compared to single crystalline silicon solar cells. The diamond wire sawing technology reduces the production cost of crystalline silicon solar cells, it increases the optical loss for the existing mc-silicon solar cells and hence its efficiency is low in the current mass production line. To overcome the optical loss in the mc-crystalline silicon, caused by the diamond wire sawing, next generation texturing process is being investigated by various research groups for the PV industry. In this review, the limitation of surface structure and optical loss due to the reflectivity of conventional mc-silicon solar cells are explained by the typical texturing mechanism. Various texturing technologies that could minimize the optical loss of mc-silicon solar cells are explained. Finally, next generation texturing technology to survive in the fierce cost competition of photovoltaic market is discussed.
      번역하기

      Current major photovoltaic (PV) market share (> 60%) is being occupied by the multicrystalline (mc)-silicon solar cells despite of low efficiency compared to single crystalline silicon solar cells. The diamond wire sawing technology reduces the pro...

      Current major photovoltaic (PV) market share (> 60%) is being occupied by the multicrystalline (mc)-silicon solar cells despite of low efficiency compared to single crystalline silicon solar cells. The diamond wire sawing technology reduces the production cost of crystalline silicon solar cells, it increases the optical loss for the existing mc-silicon solar cells and hence its efficiency is low in the current mass production line. To overcome the optical loss in the mc-crystalline silicon, caused by the diamond wire sawing, next generation texturing process is being investigated by various research groups for the PV industry. In this review, the limitation of surface structure and optical loss due to the reflectivity of conventional mc-silicon solar cells are explained by the typical texturing mechanism. Various texturing technologies that could minimize the optical loss of mc-silicon solar cells are explained. Finally, next generation texturing technology to survive in the fierce cost competition of photovoltaic market is discussed.

      더보기

      목차 (Table of Contents)

      • ABSTRACT
      • 1. Introduction
      • 2. Conventional Texturing Technology for Multi-crystalline Silicon Cells
      • 3. Next Generation Texturing Technology for Multi-silicon Solar Cells
      • 4. Conclusion
      • ABSTRACT
      • 1. Introduction
      • 2. Conventional Texturing Technology for Multi-crystalline Silicon Cells
      • 3. Next Generation Texturing Technology for Multi-silicon Solar Cells
      • 4. Conclusion
      • References
      더보기

      참고문헌 (Reference)

      1 윤명수, "공정가스와 RF 주파수에 따른 웨이퍼 표면 텍스쳐 처리 공정에서 저반사율에 관한 연구" 한국진공학회 19 (19): 114-120, 2010

      2 H. Wu, "Wire sawing technology : A state-of-the-art review" 43 : 1-9, 2016

      3 M. Saadoun, "Vapour-etching-based porous silicon : a new approach" 405 : 29-34, 2002

      4 PHOTON Consulting, LLC, "The true cost of solar power, how low can you go?"

      5 B. Meinel, "Textural development of SiC and diamond wire sawed sc-silicon wafer" 27 : 330-336, 2012

      6 C. Park, "Technology trends and prospects of silicon solar cells" 1 (1): 11-16, 2013

      7 K. Fukui, "Surface texturing using reactive ion etching for multicrystalline silicon solar cells" 1997

      8 L. A. Dobrazanski, "Surface texturing of multicrystalline silicon solar cells" 31 : 77-82, 2008

      9 X. Gu, "Seed-assisted cast quasi-single crystalline silicon for photovoltaic application : Towards high efficiency and low cost silicon solar cells" 101 : 95-101, 2012

      10 Michael J, "Sailor, Porous Silicon in Practice: Preparation, Characterization and Applications" Wiley-VCH Verlag GmbH & Co. KGaA 2012

      1 윤명수, "공정가스와 RF 주파수에 따른 웨이퍼 표면 텍스쳐 처리 공정에서 저반사율에 관한 연구" 한국진공학회 19 (19): 114-120, 2010

      2 H. Wu, "Wire sawing technology : A state-of-the-art review" 43 : 1-9, 2016

      3 M. Saadoun, "Vapour-etching-based porous silicon : a new approach" 405 : 29-34, 2002

      4 PHOTON Consulting, LLC, "The true cost of solar power, how low can you go?"

      5 B. Meinel, "Textural development of SiC and diamond wire sawed sc-silicon wafer" 27 : 330-336, 2012

      6 C. Park, "Technology trends and prospects of silicon solar cells" 1 (1): 11-16, 2013

      7 K. Fukui, "Surface texturing using reactive ion etching for multicrystalline silicon solar cells" 1997

      8 L. A. Dobrazanski, "Surface texturing of multicrystalline silicon solar cells" 31 : 77-82, 2008

      9 X. Gu, "Seed-assisted cast quasi-single crystalline silicon for photovoltaic application : Towards high efficiency and low cost silicon solar cells" 101 : 95-101, 2012

      10 Michael J, "Sailor, Porous Silicon in Practice: Preparation, Characterization and Applications" Wiley-VCH Verlag GmbH & Co. KGaA 2012

      11 M. Steinert, "Reactive Species Generated during Wet Chemical Etching of Silicon in HF/HNO3 Mixtures" 110 : 11377-11382, 2006

      12 Fraunhofer Institute for Solar Energy Systems, ISE, "Photovoltaics Report" 2015

      13 C. Pacholski, "Photonic crystal sensors based on porous silicon" 13 : 4694-4713, 2013

      14 M. Abbott, "Optical and electrical properties of laser texturing for high effciency solar cells" 14 : 225-235, 2006

      15 Z. G. Huang, "One-step-MACE nano/microstructures for high-efficient large-size multicrystalline Si solar cells" 143 : 302-310, 2015

      16 K. Chen, "Novel texturing process for diamond-wire-sawn single-crystalline silicon solar cell" 133 : 148-155, 2015

      17 F. Cao, "Next-generation multi-crystalline silicon solar cells : Diamond-wire sawing, nano-texture and high efficiency" 141 : 132-138, 2015

      18 B. Kafle, "Nanotextured multicrystalline Al-BSF solar cells reaching 18% conversion efficiency using industrially viable solar cell processes" 9 (9): 448-452, 2015

      19 B. Kafle, "Nanostructuring of c-Si surface by F2-based atmospheric pressure dry texturing process applications and materials science" 212 (212): 307-311, 2015

      20 R. R. Bilyalov, "Multicrystalline silicon solar cells with porous silicon emitter" 60 : 391-420, 2000

      21 Z. Huang, "Metal-Assisted Chemical Etching of Silicon : A Review" 23 : 285-308, 2011

      22 G. W. Trucks, "Mechanism of HF etching of silicon surfaces: A theoretical understanding of hydrogen passivation" 65 (65): 504-507,

      23 C. Gerhards, "Mechanically V-textured low cost multicrystalline silicon solar cells with a novel printing metallization" 1997

      24 W. Neu, "Low-cost multicrystalline back-contact silicon solar cells with screen printed metallization" 74 : 139-146, 2002

      25 P. Feng, "Improving the blue response and efficiency of multicrystalline silicon solar cells by surface nanotexturing" 37 : 306-309, 2016

      26 W. Chen, "Improvement of conversion effi ciency of multi-crystalline silicon solar cells using reactive ion etching with surface pre-etching" 597 : 50-56, 2015

      27 A. Volk, "Honeycomb structure on multicrystalline silicon Al-BSF solar cell with 17. 8% efficiency" 5 (5): 1027-1033, 2015

      28 M. Steinert, "Experimental studies on the mechanism of wet chemical etching of silicon in HF/HNO3 mixtures" 152 (152): C843-C850, 2005

      29 최평호, "Enhanced Efficiency of Multicrystalline Silicon Solar Cells Made via UV Laser Texturing" 한국물리학회 67 (67): 991-994, 2015

      30 B. Bhushan, "Encyclopedia of Nanotechnology"

      31 V. Benda, "Crystalline silicon cells and modules in present photovoltaics" 7 (7): 7-15, 2014

      32 V. Y. Yerokhov, "Cost-effective methods of texturing for silicon solar cells" 72 : 291-298, 2002

      33 H. Robbins, "Chemical etching of silicon" 107 (107): 108-111,

      34 H. Robbins, "Chemical etching of silicon" 106 (106): 505-508, 1959

      35 M. M. Hilali, "Bow in screen-printed back-contact industrial silicon solar cells" 91 : 1228-1233, 2007

      36 H. Savin, "Black silicon solar cells with interdigitated backcontacts achieve 22. 1% efficiency" 10 : 624-629, 2015

      37 M. B. Rabha, "Application of the chemical vapor-etching inpolycrystalline silicon solar cells" 252 : 488-493, 2005

      38 S. K. Srivastava, "Antireflective ultra-fast nanoscale texturing for efficient multi-crystalline silicon solar cells" 115 : 656-666, 2015

      39 S. Gatz, "Analysis of local Al-doped back surface fields for high efficiency screen-printed solar cells" 8 : 318-323, 2011

      40 J. Oh, "An 18. 2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures" 7 : 743-748, 2012

      41 E. Lohmuller, "Advanced metallization of rear surface passivated metal wrap through silicon solar cells" 8 : 546-551, 2011

      42 A. Goodrich, "A wafer-based monocrystalline silicon photovoltaics road map : Utilizing known technology improvement opportunities for further reductions in manufacturing costs" 114 : 110-135, 2013

      43 D. J. Monk, "A review of the chemical reaction mechanism and kinetics for hydrofluoric acid etching of silicon dioxide for surface micromachining applications" 232 : 1-12, 1993

      44 M. Ju, "A new vapor texturing method for multicrystalline silicon solar cell applications" 153 : 66-69, 2008

      45 J. Zhao, "19. 8% efficient ‘‘honeycomb’’ textured multicrystalline and 24. 4% monocrystalline silicon solar cells" 73 (73): 1991-1993, 1998

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 선정 (재인증) KCI등재
      2018-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼