1 Eldesoky, I. M., "peristaltic flow of a compressible non-Newtonian Maxwellian fluid through porous medium in a tube" 3 : 25575-, 2010
2 Sadaf, H., "hysiological fluid flow analysis by means of contraction and expansion with addition of hybrid nanoparticles" 134 : 232-, 2019
3 Kirby, B. J., "Zeta potential of microfluidic substrates. ii. data for polymers" 25 : 203-213, 2004
4 Tripathi, D., "Transverse magnetic field driven modification in unsteady peristaltic transport with electrical double layer effects" 506 : 32-39, 2016
5 Akbar, N. S., "Thermally developing MHD peristaltic transport of nanofluids with velocity and thermal slip effects" 131 : 332-, 2016
6 Prakash, J., "Thermal slip and radiative heat transfer effects on electro-osmotic magnetonanoliquid peristaltic propulsion through a microchannel" 48 : 2882-2908, 2019
7 Prakash, J., "Thermal slip and radiative heat transfer effects on electro-osmotic magnetonanoliquid peristaltic propulsion through a microchannel" 48 : 2882-2908, 2019
8 Prakash, J., "Thermal radiation effects on electroosmosis modulated peristaltic transport of ionic nanoliquids in biomicrofluidics channel" 249 : 843-855, 2018
9 Asha, S. K., "Thermal radiation and hall effects on peristaltic blood flow with double diffusion in the presence of nanoparticles" 17 : 100560-100515, 2020
10 Kattamreddy, V. R., "Thermal analysis of MHD electro-osmotic peristaltic pumping of Casson fluid through a rotating asymmetric micro-channel" 92 : 1439-1448, 2018
11 Ramesh, K., "Thermal analysis for heat transfer enhancement in electroosmosis modulated peristaltic transport of Sutterby nanofluids in a microfluidic vessel" 138 : 1311-1326, 2019
12 J. Prakash, "Study of EDL phenomenon in Peristaltic pumping of a Phan-Thien-Tanner Fluid through asymmetric channel" 한국유변학회 32 (32): 271-285, 2020
13 Tanveer, A., "Slip and porosity effects on peristalsis of MHD Ree-Eyring nanofluid in curved geometry" 12 : 955-968, 2021
14 Casson, N., "Rheology of Disperse systems" Pergamon 1959
15 Said, Z., "Radiative properties of nanofluids" 46 : 74-84, 2013
16 Borges, M. E., "Photocatalysis with solar energy: sunlight-responsive photocatalyst based on TiO2 loaded on a natural material for wastewater treatment" 135 : 527-535, 2016
17 Tripathi, D., "Peristaltic pumping of hybrid nanofluids through an asymmetric microchannel in the presence of electromagnetic fields" 202 : 2020
18 Abbasi, F. M., "Peristalsis of silverwater nanofluid in the presence of Hall and Ohmic heating effects : Applications in drug delivery" 207 : 248-255, 2015
19 Du, M., "Optical property of nanofluids with particle agglomeration" 122 : 864-872, 2015
20 Akram, J., "Numerical study of the electroosmotic flow of Al2O3-CH3OH Sisko nanofluid through a tapered microchannel in a porous environment" 10 : 4161-4176, 2020
21 Dharmendra Tripathi, "Numerical study of electroosmosis-induced alterations in peristaltic pumping of couple stress hybrid nanofluids through microchannel" Springer Science and Business Media LLC 95 (95): 2411-2421, 2021
22 Tripathi, D., "Numerical simulation of double diffusive convection and electroosmosis during peristaltic transport of a micropolar nanofluid on an asymmetric microchannel" 143 : 2499-2514, 2021
23 Tanveer, A., "Numerical simulation for peristalsis of Carreau-Yasuda nanofluid in curved channel with mixed convection and porous space" 12 : e0170029-, 2017
24 Nadeem, S., "Microvascular blood flow with heat transfer in a wavy channel having electroosmotic effects" 21 : 1198-1205, 2020
25 Cowling, T.G., "Magnetohydrodynamics" Interscience Publisher, Inc 1957
26 Darcy, H., "Les fontaines publiques de la ville de Dijon" Dalmont 1856
27 Shit, G. C., "Kundu, 2016, Electroosmotic low of power-law fluid and heat transfer in a microchannel with effects of Joule heating and thermal radiation" 462 : 1040-1057, 2016
28 Tripathi, D., "Joule heating and buoyancy effects in electroosmotic peristaltic transport of aqueous nanofluids through a microchannel with complex wave propagation" 29 : 639-653, 2018
29 Ali, A., "Investigation on TiO2-Cu/H2O hybrid nanofluid with slip conditions in MHD peristaltic flow of Jeffrey material" 143 : 1985-1996, 2021
30 Hayat, T., "Investigation of Hall current and slip conditions on peristaltic transport of Cu-water nanofluid in a rotating medium" 112 : 129-141, 2017
31 Hayat, T., "Influences of Hall current and chemical reaction in mixed convective peristaltic flow of Prandtl fluid" 407 : 321-327, 2016
32 Akbar, N. S., "Influence of magnetic field on peristaltic flow of a Casson fluid in an asymmetric channel : Application in crude oil refinement" 378 : 463-468, 2015
33 Ramesh, K., "Influence of heat and mass transfer on peristaltic flow of a couple stress fluid through porous medium in the presence of inclined magnetic field in an inclined asymmetric channel" 219 : 256-271, 2016
34 Minea, A. A., "Hybrid nanofluids based on Al2O3, TiO2 and SiO2: numerical evaluation of different approaches" 104 : 852-860, 2017
35 Noreen, S., "Heat transfer analysis on electroosmotic flow via peristaltic pumping in nonDarcy porous medium" 11 : 254-262, 2019
36 Eldabe, N. T., "Hall effects on the peristaltic transport of Williamson fluid through a porous medium with heat and mass transfer" 40 : 315-328, 2016
37 Hayat, T., "Hall effects on peristaltic flow of a Maxwell fluid in a porous medium" 363 : 397-403, 2007
38 Hayat, T., "Hall and ion slip effects on peristaltic flow of Jeffrey nanofluid with Joule heating" 407 : 51-59, 2016
39 Asghar, S., "Hall and ion slip effects on peristaltic flow and heat transfer analysis with Ohmic heating" 35 : 1509-1524, 2014
40 Hayat, T., "Hall and Ohmic heating effects on the peristaltic transport of a Carreau-Yasuda fluid in an asymmetric channel" 69a : 43-51, 2014
41 Latham, T.M., "Fluid motion in a peristaltic pump" MIT 1966
42 Wiedemann, G., "First Quantitative study of electrical endosmose" 87 : 321-323, 1852
43 Noreen, S., "Entropy generation in electromagnetohydrodynamic water based three nano fluids via porous asymmetric microchannel" 85 : 458-466, 2021
44 Ranjit, N. K., "Entropy generation and Joule heating of two-layered electroosmotic flow in the peristaltically induced micro-channel" 153-154 : 430-444, 2019
45 Abbasi, F. M., "Entropy generation analysis for peristalsis of nanofluid with temperature dependent viscosity and Hall effects" 474 : 434-441, 2019
46 Choi, S. U. S., "Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of nonNewtonian flows" 66 : 99-105, 1995
47 Prakash, J., "Electroosmotic flow of pseudoplastic nanoliquids via peristaltic pumping" 41 : 61-, 2019
48 Jayavel, P., "Electroosmotic flow of pseudoplastic nanoliquids via peristaltic pumping" 41 : 61-, 2019
49 Mithilesh Kumar Chaube, "Electroosmotic flow of biorheological micropolar fluids through microfluidic channels" Springer Science and Business Media LLC 30 (30): 89-98, 2018
50 Prakash, J., "Electroosmotic flow of Williamson ionic nanoliquids in a tapered microfluidic channel in presence of thermal radiation and peristalsis" 256 : 352-371, 2018
51 Javaria Akram, "Electroosmosis augmented MHD peristaltic transport of SWCNTs suspension in aqueous media" Springer Science and Business Media LLC 2021
52 Tripathi, D., "Electromagneto-hydrodynamic peristaltic pumping of couple stress biofluids through a complex wavy micro-channel" 236 : 358-367, 2017
53 Berli, C. L. A., "Electrokinetic flow of non-Newtonian fluids in microchannels" 320 : 582-589, 2008
54 Sadek, S. H., "Electro-osmotic oscillatory flow of viscoelastic fluids in a microchannel" 266 : 46-58, 2019
55 Moatimid, G. M., "Electro-osmotic flow and heat transfer of a non-Newtonian nanofluid under the influence of peristalsis" 92 : 1-14, 2019
56 Shit, G. C., "Electro-magnetohydrodynamic flow of biofluid induced by peristaltic wave : A non-Newtonian model" 13 : 436-448, 2016
57 Hayat, T., "Effects of Hall current and ion-slip on the peristaltic motion of couple stress fluid with thermal deposition" 31 : 117-126, 2019
58 Abo-Eldahab, E. M., "Effects of Hall and ion-slip currents on peristaltic transport of a couple stress fluid" 2 : 145-157, 2010
59 Prakash, J., "Convective heat transfer and double diffusive convection in ionic nanofluids flow driven by peristalsis and electromagnetohydrodynamics" 94 (94): 2020
60 Prakash, J., "Computer modelling of peristalsis driven intrauterine fluid flow in the presence of electromagnetohydrodynamics" 134 : 81-, 2019
61 Bég, O. A., "Computational modeling of heat transfer in an annular porous medium solar energy absorber with the P1-radiative differential approximation" 66 : 258-268, 2016
62 Prakash, J., "Comparative study of hybrid nanofluids in microchannel slip flow induced by electroosmosis and peristalsis" 10 : 1693-1706, 2020
63 Abo-Elkhair, R. E., "Combine impacts of Electrokinetic variable viscosity and partial slip on peristaltic MHD flow through a micro-channel" 43 : 201-212, 2019
64 Reuss, F. F., "Charge-induced flow" 3 : 327-344, 1809
65 Narla, V. K., "Analysis of entropy generation in biomimetic electroosmotic nanofluid pumping through a curved channel with Joule dissipation" 15 : 100424-, 2020
66 Sharma, A., "Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids" 535 : 122148-, 2019
67 Slawinski, P., "An automated intestinal biomechanics simulator for expediting robotic capsule endoscope development" 8 : 030901-, 2014
68 Farooq, S., "A theoretical analysis for peristalsis of Casson material with thermal and viscous dissipation" 23 : 3351-3364, 2019
69 Sarkar, J., "A review on hybrid nanofluids: recent research, development and applications" 43 : 164-177, 2015
70 Ellahi, R., "A hybrid investigation on numerical and analytical solutions of the electro-magnetohydrodynamics flow of nanofluid through porous media with entropy generation" 30 : 834-854, 2019
71 Akram, J., "A comparative study on the role of nanoparticle dispersion in electroosmosis regulated peristaltic flow of water" 59 : 943-956, 2020